精英家教网 > 高中数学 > 题目详情
1.求下列函数的导数:
(1)f(x)=(ax+b)n
(2)f(x)=xsin2x-$\frac{2}{cosx}$.

分析 使用复合函数的求导法则和导数运算法则求导.

解答 解:(1)f′(x)=n(ax+b)n-1(ax+b)′=na(ax+b)n-1
(2)f′(x)=sin2x+x•2sinxcosx+$\frac{2}{co{s}^{2}x}$(-sinx)=sin2x+xsin2x-$\frac{2sinx}{co{s}^{2}x}$.

点评 本题考查了导数的运算,复合函数的导数法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.为了得到函数y=cos(2x-$\frac{2π}{3}$),x∈R的图象,只要把函数y=cos2x,x∈R的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{2π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某商店每天以每瓶5元的价格从奶厂购进若干瓶24小时新鲜牛奶,然后以每瓶8元的价格出售,如果当天该牛奶卖不完,则剩下的牛奶就不再出售,由奶厂以每瓶2元的价格回收处理.
(1)若商场一天购进20瓶牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:瓶,n∈N)的函数解析式;(2)商店记录了50天该牛奶的日需求量(单位:瓶),整理得下表:
日需求量n(瓶)17181920212223
频数558121064
假设商店一天购进20瓶牛奶,以50天记录的各需求量的频率作为各需求量发生概率,求当天利润低于60元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设n∈N*,数列{an}的前n项和为Sn,已知Sn+1=Sn+an+2,且a1,a2,a5成等比数列.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足$\frac{{b}_{n}}{{a}_{n}}$=($\sqrt{2}$)${\;}^{1+{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设$\sqrt{2}a+$1,a,a-1为钝角三角形的三边,则a的取值范围为(2+$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(2x+$\frac{π}{3}$)-$\frac{1}{2016}$(0≤x≤$\frac{4π}{3}$)的零点为x1,x2,x3(x1<x2<x3),则$\frac{cos({x}_{1}+{x}_{2})}{sin({x}_{2}+{x}_{3})}$=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求ax2+2x+1=0(a≠0,a∈R,x∈R)有一个正根和一个负根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若x,y>0,则$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点(2,$\sqrt{2}$)、($\sqrt{2}$,-$\sqrt{3}$)的椭圆的标准方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步练习册答案