精英家教网 > 高中数学 > 题目详情
13.求ax2+2x+1=0(a≠0,a∈R,x∈R)有一个正根和一个负根的充要条件.

分析 首先,针对二次项系数a分情况进行讨论,然后,得到相应的结论.

解答 解:设函数f(x)=ax2+2x+1,
当a>0时,只需满足f(0)<0,此时显然不成立,
当a<0时,只需满足f(0)>0,此时显然成立,
故其成立的充要条件是a<0.

点评 本题重点考查了二次函数和一元二次方程的根之间的关系问题,属于中档题,解题关键是准确把握分类讨论思想在解题中的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,3).
(Ⅰ)若(3$\overrightarrow{a}$+2$\overrightarrow{b}$)∥(-$\overrightarrow{a}$+λ$\overrightarrow{b}$),求实数λ的值;
(Ⅱ)若(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥(k$\overrightarrow{a}$+$\overrightarrow{b}$),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若${A}_{n-2}^{2}$+n>2,求n的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的导数:
(1)f(x)=(ax+b)n
(2)f(x)=xsin2x-$\frac{2}{cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足2acosC-(2b-c)=0.
(1)求角A;
(2)若a=$\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中AB=6,C=30°,B=120°,则AC=6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知一物体在共点力$\overrightarrow{{F}_{1}}$=$\overrightarrow{a}$lg2+$\overrightarrow{b}$lg2,$\overrightarrow{{F}_{2}}$=$\overrightarrow{a}$lg5+$\overrightarrow{b}$lg2的作用下产生位移$\overrightarrow{s}$=2$\overrightarrow{a}$lg5+$\overrightarrow{b}$.其中$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则共点力对物体做的功W为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD及其正(主)视图和俯视图如图所示.
(1)求四棱锥P-ABCD的体积;
(2)求四棱锥P-ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD丄平面BCEG,BC=CD=CE=2AD=2BG=2.
(Ⅰ)证明:AG∥平面BDE;
(Ⅱ)求由顶点ABCDEG所围成的几何体的体积.

查看答案和解析>>

同步练习册答案