精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足2acosC-(2b-c)=0.
(1)求角A;
(2)若a=$\sqrt{3}$,求△ABC周长的最大值.

分析 (1)用正弦定理化简已知等式,结合诱导公式和两角和的正弦公式化简整理得sinC(1-2cosA)=0,再由sinC>0,解出cosA=$\frac{1}{2}$,可得A=$\frac{π}{3}$;
(2)由余弦定理a2=b2+c2-2bccosA,代入题中数据并结合基本不等式解出b+c∈($\sqrt{3}$,2$\sqrt{3}$],由此可得△ABC的周长l取值范围.

解答 解:(1)∵2acosC-(2b-c)=0.
由正弦定理,2sinAcosC+sinC-2sinB=0,
∵sinB=sin(A+C)=sinAcosC+cosAsinC,
∴代入上式,得sinC-2cosAsinC=0,即sinC(1-2cosA)=0,
∵C∈(0,π),得sinC>0,
∴1-2cosA,得cosA=$\frac{1}{2}$.结合A为三角形的内角,可得A=$\frac{π}{3}$;
(2)∵由余弦定理a2=b2+c2-2bccosA,得b2+c2-bc=a2=3,
∴(b+c)2=3+3bc,
∵bc≤$\frac{(b+c)^{2}}{4}$,
∴(b+c)2≤3+$\frac{3}{4}$(b+c)2,可得(b+c)2≤12,得b+c≤2$\sqrt{3}$,
∵△ABC中,b+c>a=$\sqrt{3}$,∴b+c∈($\sqrt{3}$,2$\sqrt{3}$],
由此可得:a+b+c∈(2$\sqrt{3}$,3$\sqrt{3}$],即△ABC的周长l取值范围为(2$\sqrt{3}$,3$\sqrt{3}$].

点评 本题给出实际应用问题,求三角形的周长的范围.着重考查了正余弦定理、三角函数的诱导公式和三角恒等变换公式、基本不等式求最值等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=sin(x-$\frac{π}{3}$)的最小正周期为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知扇形OAB的面积是4cm2,它的周长是8cm,求扇形的圆心角及弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设$\sqrt{2}a+$1,a,a-1为钝角三角形的三边,则a的取值范围为(2+$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),求角A,B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求ax2+2x+1=0(a≠0,a∈R,x∈R)有一个正根和一个负根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1-$\frac{3}{{x}^{3}}$)(x2+$\frac{2}{x}$)5的展开式中x4的系数为(  )
A.-60B.70C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案