精英家教网 > 高中数学 > 题目详情
18.曲线y=ax2-ax+1(a≠0)在点(0,1)处的切线与直线3x+y+1=0垂直,则a=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 先求出已知函数y在点(0,1)处的斜率;再利用两条直线互相垂直,斜率之间的关系k1•k2=-1,求出未知数a.

解答 解:∵y'=2ax-a,
∵x=0,∴y′=-a,即切线斜率为-a,
∵切线与直线3x+y+1=0垂直,∴k=-3,
∴-a×(-3)=-1即a=-$\frac{1}{3}$
故选C.

点评 本题考查导数的几何意义:在切点处的导数值为切线的斜率;两直线垂直斜率乘积为-1.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.一个人在建筑物的正西A点,测得建筑物顶的仰角是60°,这个人再从A点向南走到B点,再测得建筑物顶的仰角是30°,设A、B间的距离是10米,求建筑物的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图2)
(1)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值.
(2)当f(x)取最大值时,是否有BD⊥EG,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在梯形BCDE中,BC∥DE,BA⊥DE,且EA=DA=AB=2CB=2,沿AB将四边形ABCD折起,使得平面ABCD与平面ABE垂直,M为CE的中点.
(1)求证:AM⊥BE;
(2)求三棱锥C-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a,b,c为△ABC的内角A,B,C的对边,它的面积为$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$,则角C等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数$f(x)={({\frac{1}{2}})^{lg({x^2}-2x-3)}}$的定义域为(-∞,-1)∪(3,+∞),单调递减区间是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=bx2+cx+1,f(x)=x2+ax-lnx(a>0),g(x)在x=1处的切线方程为y=2x
(1)求b,c的值;
(2)设h(x)=f(x)-g(x),是否存在实数a,使得当x∈(0,e]时,函数h(x)的最小值为3,若存在,求出所有满足条件的实数a;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用数学归纳法证明等式:1+2+3+…+2n=n(2n+1)时,由n=k到n=k+1时,等式左边应添加的项是(  )
A.2k+1B.2k+2C.(2k+1)+(2k+2)D.(k+1)+(k+2)+…+2k

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{4}{x}(x>0)}\\{{x}^{3}+4(x≤0)}\end{array}\right.$,若关于x的方程f(x2)=a(a∈R)有四个不同的实根,则a的取值范围是(  )
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(4,7)

查看答案和解析>>

同步练习册答案