3£®ÒÑÖªÅ×ÎïÏßy2=4x£¬¹ýµãM£¨0£¬2£©µÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬ÇÒÖ±ÏßÓëxÖá½»ÓÚµãC
£¨1£©ÇóÖ¤£º|MA|£¬|MC|£¬|MB|³ÉµÈ±ÈÊýÁУ»
£¨2£©Éè$\overrightarrow{MA}$=¦Á•$\overrightarrow{AC}$£¬$\overrightarrow{MB}$=¦Â•$\overrightarrow{BC}$£¬ÊÔÎʦÁ+¦ÂÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Éè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÏûÈ¥y£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏµÈ±ÈÊýÁеÄÖÐÏîÐÔÖÊ£¬¼´¿ÉµÃÖ¤£»
£¨2£©ÔËÓÃÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬½áºÏΤ´ï¶¨Àí£¬¼ÆËã¼´¿ÉµÃµ½¶¨Öµ-1£®

½â´ð £¨1£©Ö¤Ã÷£ºÉèÖ±Ïߵķ½³ÌΪ£ºy=kx+2£¨k¡Ù0£©£¬
ÁªÁ¢·½³Ì¿ÉµÃ$\left\{\begin{array}{l}{y=kx+2}\\{{y}^{2}=4x}\end{array}\right.$µÃk2x2+£¨4k-4£©x+4=0¢Ù
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨-$\frac{2}{k}$£¬0£©£¬
Ôòx1+x2=$\frac{4-4k}{{k}^{2}}$£¬x1x2=$\frac{4}{{k}^{2}}$¢Ú
|MA|•|MB|=$\sqrt{1+{k}^{2}}$|x1-0|•$\sqrt{1+{k}^{2}}$|x2-0|=$\frac{4£¨1+{k}^{2}£©}{{k}^{2}}$£¬
¶ø|MC|2=$\sqrt{1+{k}^{2}}$|-$\frac{2}{k}$-0|2=$\frac{4£¨1+{k}^{2}£©}{{k}^{2}}$£¬
¡à|MC|2=|MA|•|MB|¡Ù0£¬
¼´ÓÐ|MA|£¬|MC|£¬|MB|³ÉµÈ±ÈÊýÁУ»
£¨2£©½â£ºÓÉ$\overrightarrow{MA}$=¦Á•$\overrightarrow{AC}$£¬$\overrightarrow{MB}$=¦Â•$\overrightarrow{BC}$£¬µÃ
£¨x1£¬y1-2£©=¦Á£¨-x1-$\frac{2}{k}$£¬-y1£©£¬£¨x2£¬y2-2£©=¦Â£¨-x2-$\frac{2}{k}$£¬-y2£©£¬
¼´µÃ£º¦Á=$\frac{-k{x}_{1}}{k{x}_{1}+2}$£¬¦Â=$\frac{-k{x}_{2}}{k{x}_{2}+2}$£¬
Ôò¦Á+¦Â=$\frac{-2{k}^{2}{x}_{1}{x}_{2}-2k£¨{x}_{1}+{x}_{2}£©}{{k}^{2}{x}_{1}{x}_{2}+2k£¨{x}_{1}+{x}_{2}£©+4}$
ÓÉ£¨1£©ÖТڴúÈëµÃ¦Á+¦Â=-1£¬
¹Ê¦Á+¦ÂΪ¶¨ÖµÇÒ¶¨ÖµÎª-1£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÖ±ÏߺÍÅ×ÎïÏß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éµÈ±ÈÊýÁеÄÐÔÖʺÍÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èôx2+y2¡Ü1£¬ÇóÖ¤|x2+2xy-y2|¡Ü$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÓÉ0£¬1£¬2£¬3£¬4£¬5£¬Õâ6¸öÊý×Ö¿ÉÒÔ×é³É¶àÉÙ¸öûÓÐÖØ¸´Êý×ֵįæÊý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$£¨x2+a£©µÄͼÏóÔÚµãPn£¨n£¬f£¨n£©£©£¨n¡ÊN*£©´¦µÄÇÐÏßlnµÄбÂÊΪkn£¬Ö±Ïßln½»xÖᣬyÖá·Ö±ðÓÚµãAn£¨xn£¬0£©£¬Bn£¨0£¬yn£©£¬ÇÒy1=-1£®¸ø³öÒÔϽáÂÛ£º
¢Ùa=-1£»
¢Ú¼Çº¯Êýg£¨n£©=xn£¨n¡ÊN*£©£¬Ôòº¯Êýg£¨n£©µÄµ¥µ÷ÐÔÊÇÏȼõºóÔö£¬ÇÒ×îСֵΪ1£»
¢Ûµ±n¡ÊN*ʱ£¬yn+kn+$\frac{1}{2}$£¼ln£¨1+kn£©£»
¢Üµ±n¡ÊN*ʱ£¬¼ÇÊýÁÐ{$\frac{1}{\sqrt{|{y}_{n}|}•{k}_{n}}$}µÄǰnÏîºÍΪSn£¬ÔòSn£¼$\frac{\sqrt{2}£¨2n-1£©}{n}$£®
ÆäÖУ¬ÕýÈ·µÄ½áÂÛÓТ٢ۢܣ¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¹ýµãM£¨2£¬4£©ÓëÅ×ÎïÏßy2=8xÖ»ÓÐÒ»¸ö¹«¹²µãµÄÖ±Ïß¹²ÓУ¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªµãA£¨1£¬1£©£¬B£¬CÊÇÅ×ÎïÏßy2=xÉÏÈýµã£¬Èô¡ÏABC=90¡ã£¬ÔòACµÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬Å×ÎïÏßCÉϵĵãM£¨2£¬m£©µ½½¹µãFµÄ¾àÀëΪ3£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£º
£¨2£©¹ýµã£¨2£¬0£©µÄÖ±Ïßl£¬Ð±ÂÊΪ1£¬ÓëÅ×ÎïÏßC½»ÓÚA¡¢BÁ½µã£¬Çó|AB|³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÇóÖ¤£ºcos£¨360¡ã-¦Á£©=cos¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ö±ÈýÀâÖùABC-A1B1C1 ÖУ¬AA1=AB=AC=1£¬E£¬F·Ö±ðÊÇCC1¡¢BC µÄÖе㣬AE¡Í
A1B1£¬DΪÀâA1B1Éϵĵ㣮
£¨1£©Ö¤Ã÷£ºDF¡ÍAE£»
£¨2£©ÊÇ·ñ´æÔÚÒ»µãD£¬Ê¹µÃÆ½ÃæDEFÓëÆ½ÃæABCËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{14}}{14}$£¿Èô´æÔÚ£¬ËµÃ÷µãDµÄλÖã¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸