精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+ax2+bx(a,b∈R).
(1)若曲线C:y=f(x)经过点P(1,2),曲线C在点P处的切线与直线x+2y-14=0垂直,求a,b的值;
(2)若f(x)在区间(1,2)内存在两个不同的极值点,求证:0<a+b<2.
考点:利用导数研究函数的极值,利用导数研究曲线上某点切线方程
专题:计算题,证明题,导数的综合应用
分析:(1)求出原函数的导函数,得到函数在点P(1,2)处的导数,由曲线C在点P处的切线与直线x+2y-14=0垂直可得f′(1)=2,再结合f(1)=2联立方程组求解a,b的值;
(2)由f(x)在区间(1,2)内存在两个不同的极值点可得f′(x)=x2+2ax+b=0在(1,2)内有两个不等的实根.利用三个二次结合求得a+b的范围.
解答: 解:(1)由f(x)=
1
3
x3+ax2+bx,得:
f′(x)=x2+2ax+b,
∵直线x+2y-14=0的斜率为-
1
2

∴曲线C在点P处的切线的斜率为2.
∴f′(1)=1+2a+b=2  ①
∵曲线C:y=f(x)经过点P(1,2),
∴f(1)=
1
3
+a+b=2  ②
联立①②得a=-
2
3
,b=
7
3

(2)∵f(x)在区间(1,2)内存在两个不同的极值点,
∴f′(x)=x2+2ax+b=0在(1,2)内有两个不等的实根.
△=4(a2-b)>0
f(1)=1+2a+b>0
f(2)=4+4a+b>0
1<-a<2

解上述不等式组得:-2<a<-1且a+b>-1-a>0,
则a+b>0且-2<a<-1.
∴a+b<a2+a=(a+
1
2
2-
1
4
<2,
∴a+b<2.
故0<a+b<2.
点评:本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数研究函数的极值,训练了利用“三个二次”的结合分析二次方程根的问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax-1,a>0
(1)当a=4,求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=
4
5
|PD|,当P在圆上运动时,求点M的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
6
3
,且椭圆C上的点到原点的距离的最大值为
3

(1)求椭圆C的方程;
(2)若动点P满足
OP
=
OM
+3
ON
,其中M、N是椭圆上不同两点,直线OM、ON的斜率之积为-
1
3
,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=x3-2ax2-4x+4a.
(1)当a=1时,f(x)的极值.
(2)若f′(-1)=0,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C满足2B=A+C且所对的边分别为a,b,c.
(1)求B;
(2)若a=
3
sinA+cosA,求当a取最大值时A,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次计算机考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只有一次补考机会,两个科目均合格方可获得证书.现某人参加这次考试,已知科目A每次考试成绩合格的概率为
4
5
,科目B每次考试成绩合格的概率为
3
4
,假设每次考试合格与否均互不影响.
(1)求他需要参加3次考试才能获得证书的概率;
(2)在这次考试中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数
a
=(cosx,
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b
-
1
2

(Ⅰ)求f(x)的最小正周期及单调递减区间;
(Ⅱ)当x∈(0,
3
)时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为
 

查看答案和解析>>

同步练习册答案