精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
6
3
,且椭圆C上的点到原点的距离的最大值为
3

(1)求椭圆C的方程;
(2)若动点P满足
OP
=
OM
+3
ON
,其中M、N是椭圆上不同两点,直线OM、ON的斜率之积为-
1
3
,求动点P的轨迹方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)利用离心率e=
6
3
,且椭圆C上的点到原点的距离的最大值为
3
,建立方程,求出b,即可求椭圆C的方程;
(2)利用
OP
=
OM
+3
ON
,所以x=x1+3x2,y=y1+3y2,结合OM、ON的斜率之积为-
1
3
,即可求动点P的轨迹方程.
解答: 解:(1)根据题意知a=
3
1-
b2
a2
=
6
3

所以,b2=1,
故所求椭圆方程为
x2
3
+y2=1

(2)设M(x1,y1),N(x2,y2),动点P(x,y),
因为M、N在椭圆上,
所以x1+3y12=3,x2+3y22=3
OP
=
OM
+3
ON

所以x=x1+3x2,y=y1+3y2
x2+3y2=(x1+3x2)2+3(y1+3y2)2=x12+3y12+9x22+27y22+6x1x2+18y1y2
=30+6x1x2+18y1y2

因为OM、ON的斜率之积为-
1
3

所以
y1
x1
y2
x2
=-
1
3

即x1x2+3y1y2=0,
所以动点P的轨迹方程为x2+3y2=30.
点评:本题考查椭圆的几何性质,考查标准方程,考查向量知识的运用,考查学生分析解决问题的能力,确定椭圆的标准方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:函数f(x)=(2a-5)x是R上的减函数.命题Q:在x∈R时,不等式x2-ax+2>0恒成立.若命题“P∪Q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的右焦点为B(1,0),右准线与x轴的交点为A(5,0),过点A作直线l交椭圆C于两个不同的点P、Q.
(1)求椭圆C的方程;
(2)求直线l斜率的取值范围;
(3)是否存在直线l,使得|BP|=|BQ|,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2处取得极值.
(Ⅰ)求a的值及f(x)的单调区间;
(Ⅱ)若x∈[1,4]时,不等式f(x)>b2恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
1+x2
),
(Ⅰ)判断并证明函数y=f(x)的奇偶性;
(Ⅱ)判断并证明函数y=f(x)在R上的单调性;
(Ⅲ)当x∈[1,2]时,不等式f(a•4x)+f(2x+1)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数:
(1)y=2x3+log2x;
(2)y=
cosx
sinx
+2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax2+bx(a,b∈R).
(1)若曲线C:y=f(x)经过点P(1,2),曲线C在点P处的切线与直线x+2y-14=0垂直,求a,b的值;
(2)若f(x)在区间(1,2)内存在两个不同的极值点,求证:0<a+b<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-x,g(x)=asinx+b,g(x)在(
π
6
,g(
π
6
))处的切线方程为6
3
x-12y+18-
3
π=0
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求g(x)的解析式;
(Ⅲ)当x≥0时,g(x)≤mex恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6),则a=
 

查看答案和解析>>

同步练习册答案