精英家教网 > 高中数学 > 题目详情
10.已知等差数列{an}中,公差d=2,a2是a1和a4的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=|11-$\frac{1}{2}$an|,求数列{bn}的前n项和Tn

分析 (1)通过将a2=2+a1、a4=6+a1代入${{a}_{2}}^{2}$=a1a4、计算可知a1=2,进而可知数列{an}是以首项、公差均为2的等差数列,计算即得结论;
(2)通过(1)可知bn=|11-n|,通过去绝对值符号可知当n≤11时bn=11-n,当n≥12时bn=n-11,进而计算可得结论.

解答 解:(1)∵数列{an}是公差d=2的等差数列,
∴a2=2+a1,a4=6+a1
又∵a2是a1和a4的等比中项,
∴${{a}_{2}}^{2}$=a1a4,即(2+a12=a1(6+a1),
整理得:2a1=4,
∴a1=2,
∴数列{an}是以首项、公差均为2的等差数列,
∴其通项公式an=2+2(n-1)=2n;
(2)由(1)可知bn=|11-$\frac{1}{2}$an|=|11-n|,
∴当n≤11时,bn=11-n,
∴Tn=$\frac{n({b}_{1}+{b}_{n})}{2}$=$\frac{n(11-1+11-n)}{2}$=$\frac{n(21-n)}{2}$;
当n≥12时,bn=n-11,
∴Tn=T11+b12+b13+…+bn
=$\frac{n(1-11+n-11)}{2}$+2T11
=$\frac{n(n-21)}{2}$+2•$\frac{11(21-11)}{2}$
=$\frac{n(n-21)}{2}$+110;
∴数列{bn}的前n项和Tn=$\left\{\begin{array}{l}{\frac{n(21-n)}{2},}&{n≤11}\\{\frac{n(n-21)}{2}+110,}&{n≥12}\end{array}\right.$.

点评 本题考查数列的通项及前n项和,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,且边BC上的高为$\frac{1}{2}$a.
(1)若A=$\frac{π}{2}$,求$\frac{c}{b}$的值;
(2)若$\frac{b}{c}$+$\frac{c}{b}$=2$\sqrt{2}$,求A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知b-c=$\frac{1}{4}$a,2sinB=3sinC.
(1)确定a,c之间的关系;
(2)求cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=sin2x+acos2x的一条对称轴方程为x=$\frac{π}{4}$,则a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知P(-2,m),Q(m,4),M(m+2,3)N(1,1),若PQ∥MN,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),则$\frac{{a}_{2014}}{{a}_{1}+{a}_{2}+…+{a}_{2013}}$=$\frac{2015}{2013}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若an+1=3an+6,a1=2,则an=-3+5•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知幂函数y=xa在第一象限内的图象如图所示,a取±2,±$\frac{1}{2}$四个值,则相应的曲线C1,C2,C3,C4的a的值依次为(  )
A.-2,-$\frac{1}{2}$,$\frac{1}{2}$,2B.2,$\frac{1}{2}$,-$\frac{1}{2}$,-2C.-$\frac{1}{2}$,-2,2,$\frac{1}{2}$D.2,$\frac{1}{2}$,-2,-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C的对边分别为a,b,c,m=(a2,b2),n=(tanA,tanB),且m∥n,那么△ABC一定是(  )
A.锐角三角形B.直角三角形
C.等腰三角形D.直角三角形或等腰三角形

查看答案和解析>>

同步练习册答案