精英家教网 > 高中数学 > 题目详情
9.从集合{1,2,3,4,5,6}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈A)的概率是$\frac{2}{5}$,则k=3或4.

分析 先求出所有的基本事件有C62=45种,再求出取到的一个数大于k,另一个数小于k的基本事件有(k-1)(6-k),根据古典概率公式即可得到关于k的方程解得即可

解答 解:∵从集合A={1,2,3,4,5,6}中任取两个数,
欲使取到的一个数大于k,另一个数小于k(其中k∈A)的概率为$\frac{2}{5}$,
∴$\frac{(6-k)(k-1)}{{C}_{6}^{2}}$=$\frac{2}{5}$,
解得k=3或k=4.
故答案为:3或4.

点评 本题考查了古典概型的概率公式的应用,关键是求出取到的一个数大于k,另一个数小于k的基本事件,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆于A,B两点.若|AF|+|BF|=4,点M到直线l的距离等于$\frac{4}{5}$,则椭圆焦距是(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,M为SD的中点,AN⊥SC,且交SC于点N.   
(Ⅰ)求证:SB∥平面ACN;
(Ⅱ)求证:SC⊥平面AMN;
(Ⅲ)求AC与平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某市共有2500个行政村,根据经济的状况分为贫困村1000个,脱贫村900个,小康村600个,为了解各村的路况,采用分层抽样的方法,若从本市中抽取100个村,则从贫困村和小康村抽取的样本数分别为(  )
A.40、24B.40、36C.24、36D.24、40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知p:“a≤t+$\frac{16}{t}$对t∈(0,+∞)恒成立”,q:“直线x-2y+a=0与直线x-2y+3=0的距离大于$\sqrt{5}$”,则¬p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“存在x0∈R,2x0≤0”的否定是(  )
A.不存在x0∈R,2x0>0B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知O是△ABC内一点,$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow 0$,则△AOB的面积与△ABC的面积之比为(  )
A.1:4B.2:3C.1:3D.1:2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知条件p:f(x)=x2+mx+1在区间($\frac{1}{2}$,+∞)上单调递增,条件q:m≥-$\frac{4}{3}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQF是等边三角形,则双曲线的离心率是2.

查看答案和解析>>

同步练习册答案