精英家教网 > 高中数学 > 题目详情
19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆于A,B两点.若|AF|+|BF|=4,点M到直线l的距离等于$\frac{4}{5}$,则椭圆焦距是(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.4

分析 设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.解得a=2,取M(0,b),由点M到直线l的距离$\frac{4}{5}$,得到b=1,由a,b,c的关系可得c,进而得到焦距2c.

解答 解:如图所示,
设F′为椭圆的左焦点,连接AF′,BF′,
则四边形AFBF′是平行四边形,
可得|AF|+|BF|=|AF|+|AF′|=2a=4,解得a=2.
取M(0,b),可得点M到直线l的距离$\frac{4}{5}$,
即有$\frac{4b}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{4}{5}$,解得b=1,
c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$,
则焦距为2c=2$\sqrt{3}$.
故选:A.

点评 本题考查了椭圆的定义、标准方程及其性质、点到直线的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sinx+acosx的图象的一条对称轴是x=$\frac{5π}{3}$.
(Ⅰ)求出a的值;
(Ⅱ)若g(x)=asinx+cosx,求出函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={0,1,2,3},B={x|x2-3x<0},则A∩B等于(  )
A.{0,1}B.{1,2}C.{0,1,2}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:
生二胎不生二胎合计
70后301545
80后451055
合计7525100
(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;
(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.
参考数据:
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,椭圆C与y轴交于A,B两点,且|AB|=2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧,直线PA,PB与直线x=4交于M,N两点,若以MN为直径的圆与x轴交于E,F两点,求点P横坐标的取值范围及|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中,以坐标原点O为极点,x轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为$\left\{\begin{array}{l}x=acosφ\\ y=sinφ\end{array}\right.({φ为参数})$,曲线C2的极坐标方程为θ=$\frac{π}{4}({ρ≥0})$且C1与C2交点的横坐标为$\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求曲线C1的普通方程;
(Ⅱ)设A,B为曲线C1与y轴的两个交点,M为曲线C1上不同于A,B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证:|OP|•|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在△ABC中,点D在BC边上,∠CAD=$\frac{π}{4}$,AC=7,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.
(Ⅰ)求sinC的值;
(Ⅱ)若BD=10,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知各项均为不同正数的等差数列{an},其前n项和为Sn
(1)若任意三个互不相等的正整数p,q,r成等差数列
①求证:$\frac{1}{{a}_{p}}$+$\frac{1}{{a}_{r}}$>$\frac{2}{{a}_{q}}$
②求证:$\frac{1}{{S}_{p}}$+$\frac{1}{{S}_{r}}$>$\frac{2}{{S}_{q}}$
(2)设bn=ln$\root{n}{{a}_{1}•{a}_{2}…{a}_{n}}$,求证:不存在实数c,使得对任意三个互不相等的正整数i,j,k都有:(i-j)bk+(j-k)bj+(k-i)bi=c成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从集合{1,2,3,4,5,6}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈A)的概率是$\frac{2}{5}$,则k=3或4.

查看答案和解析>>

同步练习册答案