精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=sinx+acosx的图象的一条对称轴是x=$\frac{5π}{3}$.
(Ⅰ)求出a的值;
(Ⅱ)若g(x)=asinx+cosx,求出函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

分析 (Ⅰ)由已知函数f(x)的一条对称轴是$x=\frac{5π}{3}$,可得$f(0)=f(\frac{10π}{3})$,利用特殊角的三角函数值即可计算得解a的值.
(Ⅱ)利用三角函数恒等变换的应用化简可得$g(x)=-\frac{{\sqrt{3}}}{3}sinx+cosx=\frac{{2\sqrt{3}}}{3}cos(x+\frac{π}{6})$,由$x∈[{-\frac{π}{6},\frac{π}{3}}]$,可求x+$\frac{π}{6}$∈[0,$\frac{π}{2}$],利用余弦函数的单调性即可得解.

解答 解:(Ⅰ)因为函数f(x)=sinx+acosx的图象的一条对称轴是$x=\frac{5π}{3}$,
所以$f(0)=f(\frac{10π}{3})$,
所以$a=-\frac{{\sqrt{3}}}{2}-\frac{a}{2}$,
所以$a=-\frac{{\sqrt{3}}}{3}$.
(Ⅱ)$g(x)=-\frac{{\sqrt{3}}}{3}sinx+cosx=\frac{{2\sqrt{3}}}{3}cos(x+\frac{π}{6})$,
因为$x∈[{-\frac{π}{6},\frac{π}{3}}]$,
所以 x+$\frac{π}{6}$∈[0,$\frac{π}{2}$].g(x)的最大值为$\frac{{2\sqrt{3}}}{3}$,g(x)的最小值为0.

点评 本题考查三角函数的对称性,考查三角函数的化简,考查正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在等比数列{an}中,公比q=-2,且a3a7=4a4,则a8等于(  )
A.16B.32C.-16D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x∈R,那么“x≠3”是“x<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{{3}^{x}+2(x<1)}\\{lo{g}_{3}(x+2)(x≥1)}\end{array}\right.$,则f(7)+f(0)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数(1-i)(2+2i)=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的左、右顶点分别为A1、A2,点P是线段OA2的中垂线与双曲线E的渐近线的交点(O为双曲线中心),若PA1⊥PA2,则双曲线E的离心率e=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于任何正整数n,求下式
$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$的和,并用数学归纳法证明你的结果.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知圆E:(x+$\sqrt{3}$)2+y2=16,点F($\sqrt{3}$,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹Γ的方程;
(2)已知A,B,C是轨迹Γ的三个动点,点A在一象限,B与A关于原点对称,且|CA|=|CB|,问△ABC的面积是否存在最小值?若存在,求出此最小值及相应直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆于A,B两点.若|AF|+|BF|=4,点M到直线l的距离等于$\frac{4}{5}$,则椭圆焦距是(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

同步练习册答案