分析 (Ⅰ)由已知函数f(x)的一条对称轴是$x=\frac{5π}{3}$,可得$f(0)=f(\frac{10π}{3})$,利用特殊角的三角函数值即可计算得解a的值.
(Ⅱ)利用三角函数恒等变换的应用化简可得$g(x)=-\frac{{\sqrt{3}}}{3}sinx+cosx=\frac{{2\sqrt{3}}}{3}cos(x+\frac{π}{6})$,由$x∈[{-\frac{π}{6},\frac{π}{3}}]$,可求x+$\frac{π}{6}$∈[0,$\frac{π}{2}$],利用余弦函数的单调性即可得解.
解答 解:(Ⅰ)因为函数f(x)=sinx+acosx的图象的一条对称轴是$x=\frac{5π}{3}$,
所以$f(0)=f(\frac{10π}{3})$,
所以$a=-\frac{{\sqrt{3}}}{2}-\frac{a}{2}$,
所以$a=-\frac{{\sqrt{3}}}{3}$.
(Ⅱ)$g(x)=-\frac{{\sqrt{3}}}{3}sinx+cosx=\frac{{2\sqrt{3}}}{3}cos(x+\frac{π}{6})$,
因为$x∈[{-\frac{π}{6},\frac{π}{3}}]$,
所以 x+$\frac{π}{6}$∈[0,$\frac{π}{2}$].g(x)的最大值为$\frac{{2\sqrt{3}}}{3}$,g(x)的最小值为0.
点评 本题考查三角函数的对称性,考查三角函数的化简,考查正弦函数的单调性,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com