精英家教网 > 高中数学 > 题目详情
15.已知函数$f(x)=1+\frac{a}{{{2^x}+1}}$(a∈R)为奇函数,则$f(x)>\frac{1}{2}$的解集为(log23,+∞).

分析 根据f(x)为R上的奇函数便可得到f(0)=0,从而求出a=-2,这样解不等式$1-\frac{2}{{2}^{x}+1}>\frac{1}{2}$即可得出$f(x)>\frac{1}{2}$的解集.

解答 解:f(x)为R上的奇函数;
∴f(0)=0;
即$1+\frac{a}{1+1}=0$;
∴a=-2;
∴由$f(x)>\frac{1}{2}$得,$1-\frac{2}{{2}^{x}+1}>\frac{1}{2}$;
整理得,2x>3;
∴x>log23;
∴$f(x)>\frac{1}{2}$的解集为(log23,+∞).
故答案为:(log23,+∞).

点评 考查奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,指数函数的值域,以及对数函数的单调性和对数式的运算性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若数列{an}满足${a_{n+1}}=2{a_n}({a_n}≠0,n∈{N^*})$,且a2与a4的等差中项是5,则a1+a2+…+an等于(  )
A.2nB.2n-1C.2n-1D.2n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要得到函数f (x)=sin2x的导函数 f′(x)的图象,只需将f (x)的图象(  )
A.向左平移$\frac{π}{2}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)
B.向左平移$\frac{π}{2}$个单位,再把各点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变)
C.向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的$\frac{1}{2}$倍(横坐标不变)
D.向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在复平面内,复数z1与z2对应的点关于虚轴对称,且z1=-1+i,则$\frac{{z}_{1}}{{z}_{2}}$=i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:
使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]
只数52344253
根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是公比为2的等比数列,且4a1为am,an的等比中项,则$\frac{1}{m}+\frac{4}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将5名教师分到3个班任课,每班至少分1名,有多少种不同的分法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的图象经过最高点(1,2),且相邻两对称轴间的距离为2.
(1)求函数f(x)的表达式;
(2)若函数g(x)=f(x)+f(1-x),x∈[-3,3],求使得g(t)=3成立的实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,若f(a)≤a,则实数a的取值范围是a≥-1.

查看答案和解析>>

同步练习册答案