精英家教网 > 高中数学 > 题目详情
3.在复平面内,复数z1与z2对应的点关于虚轴对称,且z1=-1+i,则$\frac{{z}_{1}}{{z}_{2}}$=i.

分析 由已知求得z2=1+i,代入$\frac{{z}_{1}}{{z}_{2}}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵复数z1与z2对应的点关于虚轴对称,且z1=-1+i,
则z2=1+i,
∴$\frac{{z}_{1}}{{z}_{2}}$=$\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{(1+i)(1-i)}=\frac{2i}{2}=i$,
故答案为:i.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$•$\overrightarrow{b}$=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.$\sqrt{11}$B.$\sqrt{10}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB-4sinC=0,且△ABC的周长L=5,面积S=$\frac{16}{5}$-$\frac{1}{5}$(a2+b2),则cosC=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≥0\\ x-2y+1≤0\\ 2x+y-8≤0\end{array}\right.$,则z=3x+y的取值范围是[4,11].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.海上有相距10海里的A与B两个小岛,从A岛望另外一个C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B与C之间的距离是(  )
A.$10\sqrt{3}$海里B.$\frac{{10\sqrt{6}}}{3}$海里C.$5\sqrt{2}$ 海里D.$5\sqrt{6}$海里

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=1+\frac{a}{{{2^x}+1}}$(a∈R)为奇函数,则$f(x)>\frac{1}{2}$的解集为(log23,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.使函数y=sinx为增函数,且函数值为负数的区间是(  )
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(π,$\frac{3π}{2}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=1所得的线段长为$\frac{π}{4}$,则f($\frac{π}{12}$)的值是(  )
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案