分析 画出满足条件的平面区域,求出角点的坐标,将z=3x+y的转化为y=-3x+z,结合图象求出z的范围即可.
解答 解:画出满足条件的平面区域,如图示:![]()
由$\left\{\begin{array}{l}{3x-y-2=0}\\{x-2y+1=0}\end{array}\right.$,解得A(1,1),
由$\left\{\begin{array}{l}{x-2y+1=0}\\{2x+y-8=0}\end{array}\right.$,解得B(3,2),
将z=3x+y的转化为y=-3x+z,
结合图象得直线过A(1,1)时,z最小,z的最小值是4,
直线过B(3,2)时,z最大,z的最大值是11,
故答案为:[4,11].
点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N=N | B. | M∩(∁UN)=∅ | C. | M∪N=U | D. | M⊆(∁UN) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{2}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) | |
| B. | 向左平移$\frac{π}{2}$个单位,再把各点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变) | |
| C. | 向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的$\frac{1}{2}$倍(横坐标不变) | |
| D. | 向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{25}{6}$ | D. | 不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com