精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的前n项和为Sn=-n2+24n
(1)求数列的通项公式;
(2)当n为何值时,Sn达到最大?最大值是多少?

分析 (1)利用an+1=Sn+1-Sn可知当n≥2时有an=-2n+25,验证当n=1时是否成立即可;
(2)通过配方,结合二次函数的知识即得结论.

解答 解:(1)∵Sn=-n2+24n,
∴Sn+1=-(n+1)2+24(n+1),
∴an+1=Sn+1-Sn
=[-(n+1)2+24(n+1)]-(-n2+24n)
=-2(n+1)+25,
∴当n≥2时,an=-2n+25,
又∵a1=S1=-1+24=23满足上式,
∴an=-2n+25;
(2)∵Sn=-n2+24n=-(n-12)2+144,
∴当n=12时Sn达到最大,最大值是144.

点评 本题考查等差数列的前n项和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若$\overrightarrow{a}$=(2,-3,$\sqrt{3}$),$\overrightarrow{b}$=(1,0,0),则<$\overrightarrow{a}$•$\overrightarrow{b}$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于函数f(x)=cos2x-2$\sqrt{3}$sinxcosx,给出下列命题中正确的命题序号是①③
①对任意的x1,x2,当x1-x2=π时,f(x1)=f(x2)成立;
②f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上是单调递增;
③函数f(x)的图象关于点($\frac{π}{12}$,0)成中心对称;
④将函数f(x)的图象向左平移$\frac{5π}{12}$个单位后将与y=sin2x的图象重合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$sin(\frac{π}{3}-α)=\frac{1}{4}$,则$cos(\frac{π}{6}+α)$=(  )
A.$-\frac{7}{8}$B.$-\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)=x3-$\frac{1}{2}{x^2}$-2x+3,当x∈[-1,2]时,f(x)<m-1恒成立,则实数m的取值范围为(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某同学做了一个如图所示的等腰直角三角形形状的数表,且把奇数和偶数分别依次排在了数表的奇数行和偶数行.若用a(i,j)表示第i行从左数第j个数,如a(4,3)=10,则a(21,6)=211.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某交互式计算机有20个终端,这些终端由各个单位独立操作,使用率均为0.8,则20个终端中至少有一个没有使用的概率为(  )
A.0.220B.0.820C.1-0.820D.1-0.220

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则函数在x=2处的切线斜率为17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,其中a1=1,Sn=3Sn-1+1(n>1,n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案