精英家教网 > 高中数学 > 题目详情
如图,长方体ABCD-A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=A1A1=a,Ab=2a,精英家教网
(Ⅰ)求证:MN∥平面ADD1A1
(Ⅱ)求二面角P-AE-D的大小.
分析:(Ⅰ)欲证MN∥面ADD1A1,取CD的中点K,连接MK,NK,只需证面MNK∥面ADD1A1,根据面面平行的判定定理可知只需在一个平面内找两相交直线与另一平面平行,MK∥面ADD1A1,NK∥面ADD1A1,MN∩NK=N,满足定理条件.
(Ⅱ)设F为AD的中点,作FH⊥AE,交AE于H,连接PH,根据二面角的平面角的定义可知∠PHF为二面角P-AE-D的平面角,在Rt△PFH中求出此角即可.
解答:解:(Ⅰ)证明:取CD的中点K,连接MK,NK精英家教网
∵M,N,K分别为AK,CD1,CD的中点
∵MK∥AD,NK∥DD1
∴MK∥面ADD1A1,NK∥面ADD1A1
∴面MNK∥面ADD1A1
∴MN∥面ADD1A1
(Ⅱ)设F为AD的中点
∵P为A1D1的中点∴PF∥DD1
∴PF⊥面ABCD
作FH⊥AE,交AE于H,连接PH,则由三垂线定理得AE⊥PH
从而∠PHF为二面角P-AE-D的平面角.
在Rt△AEF中,AF=
a
2
,EF=2a,AE=
17
2
a
,从而FH=
AF•EF
AE
=
a
2
•2a
17
2
a
=
2a
17

在Rt△PFH中,tan∠PFH=
PF
FH
=
DD1
FH
=
17
2

故:二面角P-AE-D的大小为arctan
17
2
点评:本小题主要考查长方体的概念、直线和平面、平面和平面的关系等基础知识,以及空间想象能力和推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,长方体ABCD-A1B1C1D1中被截去一部分,
(1)其中EF∥A1D1.剩下的几何体是什么?截取的几何体是什么?
(2)若FH∥EG,但FH<EG,截取的几何体是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,其中AB=BC,E,F分别是AB1,BC1的中点,则以下结论中
①EF与BB1垂直;
②EF⊥平面BCC1B1
③EF与C1D所成角为45°;
④EF∥平面A1B1C1D1
不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,P是线段AC的中点.
(1)判断直线B1P与平面A1C1D的位置关系并证明;
(2)若F是CD的中点,AB=BC=1,且四面体A1C1DF体积为
2
12
,求三棱锥F-A1C1D的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知如图:长方体ABCD-A1B1C1D1中,交于顶点A的三条棱长别为AD=3,AA1=4,AB=5.一天,小强观察到在A处有一只蚂蚁,发现顶点C1处有食物,于是它沿着长方体的表面爬行去获取食物,则蚂蚁爬行的最短路程是(  )
A、
74
B、5
2
C、4
5
D、3
10

查看答案和解析>>

同步练习册答案