精英家教网 > 高中数学 > 题目详情
15.已知F是抛物线C:y2=8x的焦点,直线y=kx-3k与C交于M,N两点,与C的准线相交于点P,|$\overrightarrow{MF}$|=4,且$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),则λ=(  )
A.$\frac{8}{5}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{1}{2}$

分析 设M点坐标为:M(x0,y0),y0>0,由抛物线的性质可知:x0+p=x0+2=4,即可求得x0=2,求得M点坐标,代入直线方程,即可求的k,求得直线MN方程,代入抛物线方程,求得N点坐标,将x=-2时,y=20,求得P点坐标,由$\overrightarrow{PM}$=(4,-16),$\overrightarrow{MN}$=($\frac{5}{2}$,-10),由$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),即4=λ•$\frac{5}{2}$,可求得λ的值.

解答 解:抛物线C:y2=8x的焦点,焦点F(2,0),准线方程:x=-2,
设M点坐标为:M(x0,y0),y0>0,
由|$\overrightarrow{MF}$|=4,则x0+p=x0+2=4,解得:x0=2,
∴y0=$\sqrt{8{x}_{0}}$=4,
∴M(2,4),
由M在直线y=kx-3k,代入则4=2k-3k,解得:k=-4,
∴直线MN:y=-4(x-3),
∴$\left\{\begin{array}{l}{y=-4(x-3)}\\{{y}^{2}=8x}\end{array}\right.$,整理得:y2+2y-24=0,解得:y=-6或y=4(舍去),
当y=-6,解得:x=$\frac{9}{2}$,
∴N($\frac{9}{2}$,-6),
由直线MN:y=-4(x-3),与C的准线相交于点P,即当x=-2时,解得:y=20,
∴P(-2,20),
则$\overrightarrow{PM}$=(4,-16),$\overrightarrow{MN}$=($\frac{5}{2}$,-10),
由$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),
∴4=λ•$\frac{5}{2}$,解得:λ=$\frac{8}{5}$,
故选A.

点评 本题考查直线与抛物线的位置关系,考查抛物线的性质,向量的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.0与{x|x≤4且x≠±1}的意义相同
B.高一(1)班个子比较高的同学可以形成一个集合
C.集合A={(x,y)|3x+y=2,x∈N}是有限集
D.方程x2+2x+1=0的解集只有一个元素

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿△ABD沿BD折起,使平面ABD⊥平面BCD,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x≤0}\\{f(x-1),x>0}\end{array}\right.$,则方程f(x)=x+2实根的个数是(  )
A.2B.3C.4D.4个以上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=a$\sqrt{1-{x}^{2}}$+$\sqrt{1+x}$+$\sqrt{1-x}$(a∈R).
(Ⅰ)设t=$\sqrt{1+x}$+$\sqrt{1-x}$,求t的取值范围,并把f(x)表示为t的函数φ(t);
(Ⅱ)记f(x)的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次不等式mx2-mx-1<0 的解集是全体实数,则m的取值范围是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有以下四个命题:
①函数y=sin2x+$\frac{3}{si{n}^{2}x}$的最小值是2$\sqrt{3}$;
②已知f(x)=$\frac{x-\sqrt{11}}{x-\sqrt{10}}$,则f(4)<f(3);
③定义在R上的奇函数f(x)满足f(x+1)=-f(x),则f(2016)=0;
④y=loga(2+ax)(a>0,a≠1)在R上是增函数.
其中真命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列情况下的概率.
(1)若a、b是一枚骰子掷两次所得到的点数,求使得方程x2+ax+b2=0有实根的概率;
(2)在区间[0,1]内随机取两个数,分别记为a,b,求使得方程x2+ax+b2=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$|\begin{array}{l}{{e}^{x}-1}&{-2}\\{1}&{{e}^{x}+2}\end{array}|$,其中$|\begin{array}{l}{x-3}&{-1}\\{2}&{4-x}\end{array}|$≥0,则函数f(x)的值域为[e4+e2,e10+e5].

查看答案和解析>>

同步练习册答案