精英家教网 > 高中数学 > 题目详情
2.求下列情况下的概率.
(1)若a、b是一枚骰子掷两次所得到的点数,求使得方程x2+ax+b2=0有实根的概率;
(2)在区间[0,1]内随机取两个数,分别记为a,b,求使得方程x2+ax+b2=0有实根的概率.

分析 (1)由题意知本题是一个古典概型,试验发生包含的所有事件根据分步计数原理知是36,满足条件的事件:方程无实根,则△=a2-4b2≥0即a≥2b,通过列举法得到所包含的基本事件个数,利用古典概型的概率公式求出值;
(2)试验发生包含的事件是在区间[0,1]上任取两个数a和b,写出事件对应的集合,做出面积,满足条件的事件是关于x的方程x2+ax+b2=0有实数根,根据二次方程的判别式写出a,b要满足的条件,写出对应的集合,做出面积,得到概率.

解答 解:(1)基本事件总数为:6×6=36
若方程有实根,则△=a2-4b2≥0即a≥2b,
若a=2,则b=1;若a=3,则b=1;若a=4,则b=1,2,
若a=5,则b=1,2[若a=6,则b=1,2,3;
∴目标事件个数为9,
因此方程x2+ax+b2=0有实根的概率为$\frac{9}{36}$=$\frac{1}{4}$;
(2)由题意知本题是一个等可能事件的概率,
∵试验发生包含的事件是在区间[0,1]上任取两个数a和b,
事件对应的集合是Ω={(a,b)|0≤a≤1,0≤b≤1}
对应的面积是sΩ=1
满足条件的事件是关于x的方程x2+2ax+b2=0有实数根,
即a2-4b2≥0,
∴a≥2b,
事件对应的集合是A={(a,b)|0≤a≤1,0≤b≤1,a≥2b}
对应的图形的面积是sA=$\frac{1}{2}×\frac{1}{2}×1$=$\frac{1}{4}$,
∴根据等可能事件的概率得到P=$\frac{1}{4}$.

点评 本题考查古典概型、几何概型,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列命题正确的是(  )
A.?x0∈R,x02+2x0+3=0B.x>1是x2>1的充分不必要条件
C.?x∈N,x3>x2D.若a>b,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F是抛物线C:y2=8x的焦点,直线y=kx-3k与C交于M,N两点,与C的准线相交于点P,|$\overrightarrow{MF}$|=4,且$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),则λ=(  )
A.$\frac{8}{5}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={0,2},B={1,2,3},则A∩B={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设E,F分别为平行四边形ABCD中AB,AD的中点,$\overrightarrow{EC}$+$\overrightarrow{FC}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AC}$C.$\frac{3}{2}$$\overrightarrow{AC}$D.2$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是a≤0或a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{2x+1}$+$\sqrt{3-4x}$的定义域为(  )
A.$(-\frac{1}{2},\frac{3}{4})$B.$[{-\frac{1}{2},\frac{3}{4}}]$C.$(-∞,\frac{1}{2}]$D.$(-\frac{1}{2},0)∪(0,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.点M与定点F(0,2)的距离和它到定直线y=8的距离的比是1:2,求点的轨迹方程式,并说明轨迹是什么图形.

查看答案和解析>>

同步练习册答案