分析 (1)由题意知本题是一个古典概型,试验发生包含的所有事件根据分步计数原理知是36,满足条件的事件:方程无实根,则△=a2-4b2≥0即a≥2b,通过列举法得到所包含的基本事件个数,利用古典概型的概率公式求出值;
(2)试验发生包含的事件是在区间[0,1]上任取两个数a和b,写出事件对应的集合,做出面积,满足条件的事件是关于x的方程x2+ax+b2=0有实数根,根据二次方程的判别式写出a,b要满足的条件,写出对应的集合,做出面积,得到概率.
解答 解:(1)基本事件总数为:6×6=36
若方程有实根,则△=a2-4b2≥0即a≥2b,
若a=2,则b=1;若a=3,则b=1;若a=4,则b=1,2,
若a=5,则b=1,2[若a=6,则b=1,2,3;
∴目标事件个数为9,
因此方程x2+ax+b2=0有实根的概率为$\frac{9}{36}$=$\frac{1}{4}$;
(2)由题意知本题是一个等可能事件的概率,![]()
∵试验发生包含的事件是在区间[0,1]上任取两个数a和b,
事件对应的集合是Ω={(a,b)|0≤a≤1,0≤b≤1}
对应的面积是sΩ=1
满足条件的事件是关于x的方程x2+2ax+b2=0有实数根,
即a2-4b2≥0,
∴a≥2b,
事件对应的集合是A={(a,b)|0≤a≤1,0≤b≤1,a≥2b}
对应的图形的面积是sA=$\frac{1}{2}×\frac{1}{2}×1$=$\frac{1}{4}$,
∴根据等可能事件的概率得到P=$\frac{1}{4}$.
点评 本题考查古典概型、几何概型,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,x02+2x0+3=0 | B. | x>1是x2>1的充分不必要条件 | ||
| C. | ?x∈N,x3>x2 | D. | 若a>b,则a2>b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{7}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AC}$ | C. | $\frac{3}{2}$$\overrightarrow{AC}$ | D. | 2$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},\frac{3}{4})$ | B. | $[{-\frac{1}{2},\frac{3}{4}}]$ | C. | $(-∞,\frac{1}{2}]$ | D. | $(-\frac{1}{2},0)∪(0,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com