精英家教网 > 高中数学 > 题目详情

【题目】已知常数,数列满足.

(1),求的值;

(2)(1)的条件下,求数列的前项和

(3)若数列中存在三项()依次成等差数列,的取值范围.

【答案】(1)(2);(3.

【解析】

1)根据题中条件,逐项计算,即可得出结果;

2)由(1)得到,当时,,从而,得出,由等比数列的求和公式,即可得出结果;

3)先由,得到数列是递增数列,分三种情况,利用放缩法,以及等差中项的概念,即可得出结果.

1)因为

所以

因此

2)因为

所以,当时,,从而

于是有:

时,

时,

所以,即

3)因为

所以,即数列是递增数列,

①当时,有,于是有

从而

所以

若数列中存在三项()依次成等差数列,

则有,即

因为,所以

所以不成立,因此此时数列中不存在三项()依次成等差数列;

②当时,有

此时

于是当时,,从而

所以

若数列中存在三项()依次成等差数列,

则有,同①可知:,于是有

因为,所以

因为是整数,所以

于是,即矛盾,

故此时数列中不存在三项()依次成等差数列;

③当时,有

于是

此时数列中存在三项()依次成等差数列,

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为,(为参数.以原点为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为

(1)写出直线的极坐标方程与曲线的直角坐标方程

(2)已知与直线平行的直线过点且与曲线交于两点试求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若有穷数列)满足:①;②.则称该数列为“阶非凡数列”

1)分别写出一个单调递增的“阶非凡数列”和一个单调递减的“阶非凡数列”;

2)设,若“阶非凡数列”是等差数列,求其通项公式;

3)记“阶非凡数列”的前项的和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出)名员工从事第三产业,调整后这名员工他们平均每人创造利润为万元,剩下的员工平均每人每年创造的利润可以提高.

1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整多少名员工从事第三产业?

2)设,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.

1)求曲线的标准方程;

2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,正方形的边长为2,设为侧棱的中点.

1)求正四棱锥的体积

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线所在的平面上的定点,若存在以点为顶点的角,使得对于曲线上的任意两个不同的点恒成立,则称角为曲线点视角,并称其中最小的点视角为曲线相对于点点确视角”.已知曲线和圆轴上一点

1)对于坐标原点,写出曲线点确视角的大小;

2)若在曲线上,求的最小值;

3)若曲线和圆点确视角相等,求点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案