精英家教网 > 高中数学 > 题目详情
17.已知集合A=$\left\{{x\left|{\frac{x+1}{x+a}<2}\right.}\right\}$,若1∉A,则实数a的取值范围为(  )
A.[-1,0]B.[-1,0)C.(-1,0]D.(-1,0)

分析 本题考查的是集合元素的分布以及集合与集合间的运算问题.在解答时可先根据1∉A,读出集合A在实数集当中没有元素1,又集合A中的元素是由一元二次不等式构成的解集,故问题可转化为该不等式没有实数1.由$\frac{2}{1+a}$≥2解得a的范围即可.

解答 解:根据1∉A,可知,集合A在实数集当中没有元素1,又$\frac{x+1}{x+a}$<2,
故问题可转化为一元二次不等式没有实数1.由$\frac{2}{1+a}$≥2
所以(-1,0].
故选:C.

点评 本题主要考查了元素与集合关系的判断,考查了学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E为BC中点,F在棱PD上,AF⊥PD,点B到平面AEF的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解关于x的不等式ax2-(a+1)x+1>0(a为常数且a≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),令函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,
(1)求函数f(x)的最小正周期和单调减区间.
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=-1,a=$\sqrt{7}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,求边b和c的值(b>c).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,a1,a4是方程x2-2x-3=0的两根,则a2•a3=(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知p:|1-$\frac{x-1}{3}$|≤2,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围为(  )
A.m>9B.m≥9C.m≥7D.m>7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{{\begin{array}{l}{-2{e^{x-2}},x≥2}\\{{{log}_3}({{x^2}-1}),x<2}\end{array}}$,则f(f(2))的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等比数列{an}中,各项都是正数,且${a_1},\frac{1}{2}{a_3},2{a_2}$成等差数列,则$\frac{{{a_8}+{a_9}}}{{{a_7}+{a_8}}}$=(  )
A.$\sqrt{2}-1$B.$3-2\sqrt{2}$C.$3+2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆x2+y2-2x-4y=0的半径是$\sqrt{5}$.

查看答案和解析>>

同步练习册答案