分析 (1)由题意结合数量积和三角函数的运算可得可得f(x)解析式,利用周期公式可求周期,利用余弦函数的单调性可求单调递减区间;
(2)由(1)结合已知及余弦函数的图象可得A值,利用平面向量数量积的运算可求bc=6,进而利用余弦定理可求b+c=5,联立即可解得b,c的值.
解答 (本题满分为12分)
解:(1)∵f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=2cos2x-$\sqrt{3}$sin2x=1+cos2x-$\sqrt{3}$sin2x=1+2cos(2x+$\frac{π}{3}$),---------(3分)
∴f(x)的最小正周期T=π,
∵y=cosx在[2kπ,2kπ+π](k∈Z)上单调递减,
∴2kπ≤2x+$\frac{π}{3}$≤2kπ+π,k∈Z,得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
∴f(x)的单调减区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z,-------------(6分)
(2)f(A)=1+2cos(2A+$\frac{π}{3}$)=-1,
∴cos(2A+$\frac{π}{3}$)=-1,
又∵0<A<π,
∴$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{7π}{3}$,∴2A+$\frac{π}{3}$=π,∴A=$\frac{π}{3}$,---------(9分)
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,即bc=6,由a2=b2+c2-2bccosA=(b+c)2-3bc,
即7=(b+c)2-18,b+c=5,
又∵b>c,
∴b=3,c=2.--------(12分)
点评 本题考查平面向量数量积的运算,正弦定理,余弦定理,三角函数的图象和性质,三角函数周期公式在解三角形中的应用,考查了转化思想,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\root{3}{2}$ | B. | $-\frac{1}{2}$ | C. | -2 | D. | $-\root{3}{0.5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | [-1,0) | C. | (-1,0] | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com