分析 (1)f′(x)=$\frac{1}{{x}^{2}}$,g′(x)=$\frac{ax+1-ax}{(ax+1)^{2}}$=$\frac{1}{(ax+1)^{2}}$.由函数f(x),g(x)的图象在x${\;}_{0}=\frac{1}{2}$处的切线斜率相同,可得$\frac{1}{(\frac{1}{2})^{2}}$=$\frac{1}{(\frac{1}{2}a+1)^{2}}$,解得a即可得出.
(2)由f(ex)≤g(x)在x∈[0,+∞) 恒成立,即$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$,$1-\frac{1}{{e}^{x}}$∈[0,1),$\frac{x}{ax+1}$≥0在x∈[0,+∞) 恒成立,可得a≥0.于是不等式$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$恒成立等价于(ax+1)(ex-1)-exx≤0在[0,+∞)上恒成立.令:h(x)=(ax+1)(ex-1)-exx=ex(ax-x+1)-(ax+1),利用导数研究其单调性,对a分类讨论即可得出.
解答 解:(1)f′(x)=$\frac{1}{{x}^{2}}$,g′(x)=$\frac{ax+1-ax}{(ax+1)^{2}}$=$\frac{1}{(ax+1)^{2}}$.
∵函数f(x),g(x)的图象在x${\;}_{0}=\frac{1}{2}$处的切线斜率相同,
∴$\frac{1}{(\frac{1}{2})^{2}}$=$\frac{1}{(\frac{1}{2}a+1)^{2}}$,解得a=-3或-1.都符合题意.
∴求得实数a的值为-3或-1.
(2)∵f(ex)≤g(x)在x∈[0,+∞) 恒成立,
∴$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$,$1-\frac{1}{{e}^{x}}$∈[0,1),
∴$\frac{x}{ax+1}$≥0在x∈[0,+∞) 恒成立,
∴a≥0.
不等式$1-\frac{1}{{e}^{x}}$≤$\frac{x}{ax+1}$恒成立等价于(ax+1)(ex-1)-exx≤0在[0,+∞)上恒成立.
令:h(x)=(ax+1)(ex-1)-exx=ex(ax-x+1)-(ax+1),
h′(x)=ex(ax-x+a)-a,
h″(x)=ex(ax-x+2a-1)=(a-1)ex$(x+\frac{2a-1}{a-1})$.
h″(0)=2a-1,h′(0)=0,h(0)=0.
①当a≥1时,∴在x∈[0,+∞),h″(x)>0,∴h′(x)在(0,+∞) 是增函数,
∴h′(x)>h′(0)=0,h(x)在(0,+∞) 是增函数,
∴与h(x)=(ax+1)(ex-1)-exx≤0矛盾,舍去.
②当$\frac{1}{2}<a<1$时,∴(a-1)<0,$\frac{2a-1}{a-1}$<0,∴h″(x)=(a-1)ex$(x+\frac{2a-1}{a-1})$.在$(0,-\frac{2a-1}{a-1})$ 时,
h″(x)>0,∴与(1)同理,不合题意,舍去.
③当$0≤a≤\frac{1}{2}$时,∴(a-1)<0,$\frac{2a-1}{a-1}$≥0,故h′(x)在x∈(0,+∞)上是减函数,
∴h′(x)<h′(0)=0,函数h(x)是(0,+∞)上的减函数,h(x)<h(0)=0符合题意.
综合得:实数a的取值范围为$[0,\frac{1}{2}]$.
点评 本题考查了利用导数研究函数的单调性极值与最值、几何意义,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>9 | B. | m≥9 | C. | m≥7 | D. | m>7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 1+$\sqrt{2}$ | D. | 2+$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}-1$ | B. | $3-2\sqrt{2}$ | C. | $3+2\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com