精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是等比数列,且a2=-$\frac{1}{4}$,a5=2,则{an}的公比q为(  )
A.$-\root{3}{2}$B.$-\frac{1}{2}$C.-2D.$-\root{3}{0.5}$

分析 利用等比数列的通项公式即可得出.

解答 解:∵a2=-$\frac{1}{4}$,a5=2,
∴2=$-\frac{1}{4}{q}^{3}$,解得q=-2.
故选:C.

点评 本题考查了比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A、B是抛物线C上异于O的两点.
(1)求抛物线C的方程;
(2)若OA⊥OB,求证直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{\sqrt{x+4}}{x+2}$的定义域为(  )
A.[-4,+∞)B.(-2,+∞)C.[-4,-2)D.[-4,-2)∪(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正四面体(所有棱长都相等的三棱锥)的俯视图如图所示,其中四边形ABCD是边长为$\sqrt{2}$cm的正方形,则这个正四面体的主视图的面积为(  )cm2
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是减函数,则a的取值范围是(  )
A.$(0,\frac{1}{2}]$B.(0,1)C.$(\frac{1}{2},1)$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,B=45°,AC=$\sqrt{5}$,cosC=$\frac{{\sqrt{5},}}{5}$,求
(1)求BC的长;
(2)若点D是AB的中点,求中线CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E为BC中点,F在棱PD上,AF⊥PD,点B到平面AEF的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$(x∈R)的最小值为(  )
A.2B.3C.2$\sqrt{2}$D.2.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),令函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,
(1)求函数f(x)的最小正周期和单调减区间.
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=-1,a=$\sqrt{7}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,求边b和c的值(b>c).

查看答案和解析>>

同步练习册答案