分析 以A为原点,AE为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出点B到平面AEF的距离.
解答 解:
∵四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,
∴以A为原点,AE为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
∵AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E为BC中点,F在棱PD上,AF⊥PD,
∴A(0,0,0),B($\sqrt{3}$,-1,0),E($\sqrt{3},0,0$),P(0,0,$\frac{2\sqrt{3}}{3}$),D(0,2,0),
设F(a,b,c),$\overrightarrow{PF}=λ\overrightarrow{PD}$,则(a,b,c-$\frac{2\sqrt{3}}{3}$)=(0,2λ,-$\frac{2\sqrt{3}}{3}λ$),
解得a=0,b=2λ,c=$\frac{2\sqrt{3}}{3}-\frac{2\sqrt{3}}{3}λ$,
∴$\overrightarrow{AF}$=(0,2λ,$\frac{2\sqrt{3}}{3}-\frac{2\sqrt{3}}{3}λ$),$\overrightarrow{PD}$=(0,2,-$\frac{2\sqrt{3}}{3}$),
∵AF⊥PD,∴$\overrightarrow{AF}•\overrightarrow{PD}$=4λ-$\frac{4}{3}+\frac{4}{3}λ=0$,
解得λ=$\frac{1}{4}$,∴$\overrightarrow{AB}$=($\sqrt{3},-1,0$),$\overrightarrow{AE}$=($\sqrt{3},0,0$),$\overrightarrow{AF}$=(0,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
设平面AEF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=\sqrt{3}x=0}\\{\overrightarrow{n}•\overrightarrow{AF}=\frac{1}{2}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{n}$=(0,$\sqrt{3},-1$),
∴点B到平面AEF的距离为:
d=$\frac{|\overrightarrow{n}•\overrightarrow{AB}|}{|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{{\sqrt{3}}}{2}$.
点评 本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 棱长为1的正方体的内切球的表面积为4π | |
| B. | 三条平行直线最多确定三个平面 | |
| C. | 正方体ABCD-A1B1C1D1中,AB与C1D1异面 | |
| D. | 若平面α⊥平面β,平面β⊥平面γ,则平面α∥平面γ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\root{3}{2}$ | B. | $-\frac{1}{2}$ | C. | -2 | D. | $-\root{3}{0.5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | [-1,0) | C. | (-1,0] | D. | (-1,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com