精英家教网 > 高中数学 > 题目详情
18.已知p:|1-$\frac{x-1}{3}$|≥2,q:x2-2x+1-m2≥0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.

分析 分别求出p,q为真时的x的范围,根据集合的包含关系得到关于m的不等式组,解出即可.

解答 解:由p:|1-$\frac{x-1}{3}$|≥2,解得:x≤-2或x≥10,
故¬p:-2<x<10,记为集合A={x|-2<x<10},
由q:x2-2x+1-m2≥0(m>0),
 解得:x≤1-m或x≥1+m,
故¬q:1-m<x<1+m,
记为集合B={x|1-m<x<1+m},
∵¬p是¬q的必要不充分条件,
∴B?A,
∴$\left\{\begin{array}{l}{1-m≥-2}\\{1+m≤10}\\{m>0}\end{array}\right.$,解得:0<m≤3,
故实数m的取值范围为(0,3].

点评 本题考查了充分必要条件,考查集合的包含关系以及不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合P={0,x},Q={lnx,2},P∩Q={0},则P∪Q为(  )
A.{0,2}B.{0,1,2}C.{1,2}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在区间[0,2π]上任取一个实数α,则该数是方程$\frac{sinα}{|sinα|}$+$\frac{cosα}{|cosα|}$+$\frac{tanα}{|tanα|}$=-1的解的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\frac{\sqrt{x+4}}{x+2}$的定义域为(  )
A.[-4,+∞)B.(-2,+∞)C.[-4,-2)D.[-4,-2)∪(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x(x-2)≤0},B={-2,-1,0,1},则A∩B=(  )
A.{-2,-1}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正四面体(所有棱长都相等的三棱锥)的俯视图如图所示,其中四边形ABCD是边长为$\sqrt{2}$cm的正方形,则这个正四面体的主视图的面积为(  )cm2
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是减函数,则a的取值范围是(  )
A.$(0,\frac{1}{2}]$B.(0,1)C.$(\frac{1}{2},1)$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E为BC中点,F在棱PD上,AF⊥PD,点B到平面AEF的距离为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解关于x的不等式ax2-(a+1)x+1>0(a为常数且a≠0).

查看答案和解析>>

同步练习册答案