精英家教网 > 高中数学 > 题目详情
18.已知z=m+1+(3m-2)i(m∈R).
(1)若|z|≤5,求实数m的取值范围;
(2)求|z|的最小值.

分析 (1)根据模长公式解不等式|z|≤5,即可求实数m的取值范围;
(2)根据复数求|z|的表达式,结合一元二次函数的性质即可求最小值.

解答 解:(1)若|z|≤5,
即$\sqrt{(m+1)^{2}+(3m-2)^{2}}$≤5,
即(m+1)2+(3m-2)2≤25,
即10m2-10m-20≤0,
即m2-m-2≤0,
得-1≤m≤2,
即实数m的取值范围是[-1,2];
(2)|z|2=(m+1)2+(3m-2)2=10m2-10m+5=10(m-$\frac{1}{2}$)2+$\frac{5}{2}$,
∴当m=$\frac{1}{2}$时,|z|2取得最小值$\frac{5}{2}$,
即|z|=$\sqrt{(m+1)^{2}+(3m-2)^{2}}$的最小值$\sqrt{\frac{5}{2}}$=$\frac{\sqrt{10}}{2}$.

点评 本题主要考查复数模长公式的应用,结合一元二次函数和一元二次不等式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如果把地球看作是一个球,规定在球面上,1′的圆心角对应的弧长定义为1海里,若地球半径是6376.3千米,计算1海里合多少千米?(精确到0.0001).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义区间(c,d)、(c,d]、[c,d)、[c,d]的长度均为d-c(d>c),己知实数p>0,则满足不等式$\frac{1}{x-p}$+$\frac{1}{x}$≥1的x构成的区间长度之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求值:$\frac{2sin20°+cos10°+tan20°•sin10°}{csc40°+cot80°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}的各项为互异正数,且其倒数构成等差数列,则$\frac{{a}_{1}{a}_{2}+{a}_{2}{a}_{3}+…+{a}_{2014}{a}_{2015}}{{a}_{1}{a}_{2015}}$=2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合M={x|x2-8x+15<0,x∈R},集合P={|z||z=3a+(5-4a)i,a∈R},若M∩P=P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)是以1为周期的偶函数,且$f(-\frac{2}{5})=3$,若$sinα=\frac{{\sqrt{5}}}{5}$,则f(cos2α)的值是(  )
A.-3B.3C.$-\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(x+8)(3-x)<0的一个充分不必要条件是(  )
A.-8<x<3B.x>8C.x<-3D.x<-8或x>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知p:a≤2,q:a(a-2)≤0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案