精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前 n项和为 Sn,且满足a1=1,an•an+1=2Sn,设${b_n}=\frac{{2{a_n}-1}}{{{3^{a_n}}}}$,则数列{bn}的前 n项和为$1-\frac{n+1}{3^n}$.

分析 an•an+1=2Sn,a1=1.n=1时,a2=2.n≥2时,可得an(an+1-an-1)=2an≠0,an+1-an-1=2,因此数列{an}的奇数项与偶数项分别成等差数列,公差都为2,其中a1=1,a2=2.可得:an=n.${b_n}=\frac{{2{a_n}-1}}{{{3^{a_n}}}}$=$\frac{2n-1}{{3}^{n}}$,再利用错位相减法、等比数列的求和公式即可得出.

解答 解:∵an•an+1=2Sn,a1=1
∴n=1时,a2=2.
n≥2时,an-1an=2Sn-1,可得an(an+1-an-1)=2an≠0,
∴an+1-an-1=2,
∴数列{an}的奇数项与偶数项分别成等差数列,公差都为2,其中a1=1,a2=2.
∴n为奇数时,an=1+$(\frac{n+1}{2}-1)×2$=n.
n为偶数时,an=2+$(\frac{n}{2}-1)$×2=n.
综上可得:an=n.
${b_n}=\frac{{2{a_n}-1}}{{{3^{a_n}}}}$=$\frac{2n-1}{{3}^{n}}$,
则数列{bn}的前 n项和Tn=$\frac{1}{3}+\frac{3}{{3}^{2}}$+$\frac{5}{{3}^{3}}$+…+$\frac{2n-1}{{3}^{n}}$,
∴$\frac{1}{3}$Tn=$\frac{1}{{3}^{2}}$+$\frac{3}{{3}^{3}}$+…+$\frac{2n-3}{{3}^{n}}$+$\frac{2n-1}{{3}^{n+1}}$,
∴$\frac{2}{3}{T}_{n}$=$\frac{1}{3}+$$2(\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}})$-$\frac{2n-1}{{3}^{n+1}}$=$\frac{1}{3}$+2×$\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{2n-1}{{3}^{n+1}}$,
化为:Tn=$1-\frac{n+1}{3^n}$.
故答案为:$1-\frac{n+1}{3^n}$.

点评 本题考查了错位相减法、等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.
(1)求证:QP⊥AC;
(2)当二面角Q-AC-P的大小为120°时,求QB的长;
(3)在(2)的条件下,求三棱锥Q-ACP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点M(x,y)满足不等式组$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,点P(-4a,a)(a>0),则当$\overrightarrow{OP}•\overrightarrow{OM}$最大时,点M为(  )
A.(0,2)B.(0,0)C.(4,6)D.(2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,i是虚数单位,若a+i=1-bi,则(a+bi)8=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为(  )
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,点M为边BC上任意一点,点N为AM的中点,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),则λ+μ的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.阅读如图所示的程序框图,运行相应的程序,输出的S=127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(-1,$\sqrt{3}$),则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z满足z2=3+4i(i是虚数单位),则z的模为(  )
A.25B.5C.$\sqrt{5}$D.2+i

查看答案和解析>>

同步练习册答案