精英家教网 > 高中数学 > 题目详情
14.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$的部分图象如图所示,则以下关于f(x)图象的描述正确的是(  )
A.在(-$\frac{π}{12}$,$\frac{π}{6}$)单调递增B.在(-$\frac{5π}{6}$,-$\frac{7π}{12}$)单调递减
C.x=-$\frac{5π}{6}$是其一条对称轴D.(-$\frac{π}{12}$,0)是其一个对称中心

分析 根据图象的两个点A、B的横坐标,得到四分之三个周期的值,得到周期的值,做出ω的值,把图象所过的一个点的坐标代入方程做出初相,求得解析式,利用正弦函数的图象和性质即可得解.

解答 解:由图象可得:$\frac{3T}{4}$=$\frac{5π}{12}$-(-$\frac{π}{3}$)=$\frac{3π}{4}$,
∴T=$\frac{2π}{ω}$=π,解得ω=2,
又∵由函数f(x)的图象经过($\frac{5π}{12}$,2),
∴2=2sin(2×$\frac{5π}{12}$+φ),
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,(k∈Z),即φ=2kπ-$\frac{π}{3}$,(k∈Z),
又由|φ|<$\frac{π}{2}$,则φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$).
∴由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可得函数f(x)的单调递增区间为:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,由(-$\frac{π}{12}$,$\frac{π}{6}$)?[-$\frac{π}{12}$,$\frac{5π}{12}$]可得A正确;
由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,可得函数f(x)的单调递减区间为:[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z,可得B不正确;
由sin[2×(-$\frac{5π}{6}$)-$\frac{π}{3}$]=0≠±1,故C不正确;
由sin[2×(-$\frac{π}{12}$)-$\frac{π}{3}$]=-1≠0,故D不正确;
故选:A.

点评 本题考查由部分图象确定函数的解析式,考查了正弦函数的图象和性质,解题的关键是确定初相的值,这里利用代入点的坐标求出初相,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥-1}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$,则目标函数z=x+3y的最大值为(  )
A.0B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^{2}}$,n∈N*,则an=$\frac{1}{n+1}$,b2016=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合P={x|x2-2x-3≥0},Q={x|1<x<4},则∁R(P∩Q)等于(  )
A.(-1,3)B.(3,4]C.(-∞,3)∪[4,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从集合{1,2,3,5,11}中有放回地任取2次元素分别作为直线Ax+By=0中的A、B,则恰好为坐标系角平分线的直线的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C上任意一点P到点F(1,0)的距离比到直线l:x=-2的距离小1.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)若斜率k>2的直线l过点F且交曲线C为A、B两点,当线段AB的中点M到直线l′:5x+12y+a=0(a>-5)的距离为$\frac{1}{13}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={y|$\frac{x}{4}$+$\frac{y}{2}$=1},N={x|${\frac{x^2}{16}}\right.$+$\frac{y^2}{4}$=1},则M∩N=(  )
A.B.{(4,0),(0,2)}C.{4,2}D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足iz=i+z,则z=(  )
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三棱锥S-ABC的各顶点都在一个半径为1的球面上,球心O在AB上,SO⊥底面ABC,$AC=\sqrt{2}$,则此三棱锥的体积为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案