| A. | 0 | B. | 6 | C. | 9 | D. | 12 |
分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+3y过点P(0,3)时,z最大值即可.
解答
解:作出约束条件$\left\{\begin{array}{l}{x≥-1}\\{x-y+3≥0}\\{2x+y-3≤0}\end{array}\right.$的可行域如图,
由z=x+3y知,y=-$\frac{1}{3}$x+$\frac{1}{3}$z,
所以动直线y=-$\frac{1}{3}$x+$\frac{1}{3}$z的纵截距$\frac{1}{3}$z取得最大值时,
目标函数取得最大值.
由$\left\{\begin{array}{l}{x-y+3=0}\\{2x+y-3=0}\end{array}\right.$得P(0,3).
结合可行域可知当动直线经过点P(0,3)时,
目标函数取得最大值z=0+3×3=9.
故选:C.
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{13}$ | B. | $\frac{12}{7}$ | C. | $\frac{3}{13}$ | D. | -$\frac{7}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-$\frac{π}{12}$,$\frac{π}{6}$)单调递增 | B. | 在(-$\frac{5π}{6}$,-$\frac{7π}{12}$)单调递减 | ||
| C. | x=-$\frac{5π}{6}$是其一条对称轴 | D. | (-$\frac{π}{12}$,0)是其一个对称中心 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com