精英家教网 > 高中数学 > 题目详情
5.如图在正方体ABCD-A1B1C1D1中,E,F,M,N分别为棱AD,AB,DC,BC的中点.
(1)求证:平面A1EF∥平面MNB1D1
(2)二面角A-EF-A1的正切值.

分析 (1)由已知得EF∥MN,D1M∥A1F,由此能证明平面A1EF∥平面MNB1D1
(2)连结BD、AC,交于点O,AC∩EF=G,则∠A1GA是二面角A-EF-A1的平面角,由此能求出二面角A-EF-A1的正切值.

解答 证明:(1)∵在正方体ABCD-A1B1C1D1中,E,F,M,N分别为棱AD,AB,DC,BC的中点,
∴EF∥MN,D1M∥A1F,
又A1E∩EF=E,D1M∩MN=M,
A1E,EF?平面A1EF,D1M,MN?平面D1MN,
∴平面A1EF∥平面MNB1D1
解:(2)连结BD、AC,交于点O,AC∩EF=G,
设正方体棱长为2,E,F,M,N分别为棱AD,AB,DC,BC的中点,
∴AG=$\frac{1}{2}AO=\frac{1}{4}AC$=$\frac{\sqrt{2}}{2}$,AG⊥EF,A1G⊥EF,
∴∠A1GA是二面角A-EF-A1的平面角,
∴tan∠A1GA=$\frac{A{A}_{1}}{AG}$=$\frac{2}{\frac{\sqrt{2}}{2}}$=2$\sqrt{2}$.
∴二面角A-EF-A1的正切值为2$\sqrt{2}$.

点评 本题考查面面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+3x2-9x+3.求:
(Ⅰ)f(x)的单调递增区间;
(Ⅱ)f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从集合{1,2,3,…,11}中任意取两个元素作为椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1方程的m和n,则能构成焦点在x轴上的椭圆个数为(  )
A.55B.90C.110D.121

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某小卖部为了研究热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天热茶销售量与当天气温,并制作了对照表:
气温°C1496-5
茶销售量(杯)34444874
由表中数据算得线性回归方程$\widehaty=bx+a$中b≈-2
(1)求y对x的线性回归方程;
(2)预测当气温为-1℃时,热茶销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“任意的x∈R,2x4-x2+1<0”的否定是(  )
A.不存在x∈R,2x4-x2+1<0B.存在x∈R,2x4-x2+1<0
C.对任意的x∈R,2x4-x2+1≥0D.存在x∈R,2x4-x2+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,已知在一个二面角的棱上有两个点A、B,线段AC、BD分别在这个二面角的两个面内,并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2$\sqrt{17}$cm,则这个二面角的度数为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥面D1AC.设AB=2.
(Ⅰ)求二面角E-AC-D1的大小; 
(Ⅱ)在D1E上是否存在一点P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A1CD,所成二面角A1-CD-B的平面角为α,则(  )
A.∠A1CB≥αB.∠A1DB≤αC.∠A1DB≥αD.∠A1CB≤α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知某几何体的三视图如图所示,则这个几何体的体积为$\frac{8}{3}$,表面积为6+4$\sqrt{2}$+2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案