分析 (1)设x<0,则-x>0,结合已知与函数是奇函数可得x<0时的解析式,则答案可求;
(2)由已知结合(1)写出分段函数解析式,然后利用奇偶性的定义证明g(x)的奇偶性.
解答 解:(1)设x<0,则-x>0,
此时有f(-x)=$\sqrt{-x}$.
又∵函数f(x)为奇函数,
∴f(x)=-f(-x)=-$\sqrt{-x}$.
∴当x<0时,$f(x)=-\sqrt{-x}$.
∴$f(x)=\left\{{\begin{array}{l}{\sqrt{x},x≥0}\\{-\sqrt{-x},x<0}\end{array}}\right.$;
(2)函数g(x)解析式为g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{f(-x),x<0}\end{array}\right.$=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$,
g(x)的定义是R,关于原点对称,
当x>0时,-x<0,$g(-x)=\sqrt{-(-x)}=\sqrt{x}=g(x)$,
当x<0时,-x>0,$g(-x)=\sqrt{-x}=g(x)$,
综上所述,函数g(x)为偶函数.
点评 本题考查函数解析式的求解及常用方法,考查函数奇偶性的判断方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | [1,+∞) | C. | (1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<0} | B. | {x|x<-1} | C. | {x|x>-1} | D. | {x|-1<x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com