【题目】已知向量
=(cos
,sin
),
=(cos
,﹣sin
),函数f(x)=
﹣m|
+
|+1,x∈[﹣
,
],m∈R.
(1)当m=0时,求f(
)的值;
(2)若f(x)的最小值为﹣1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+
m2 , x∈[﹣
,
]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.
【答案】
(1)解:
=(cos
,sin
)(cos
,﹣sin
)=cos
cos
﹣sin
sin
=cos(
+
)=cos2x,
当m=0时,f(x)=
+1=cos2x+1,
则f(
)=cos(2×
)+1=cos
+1= ![]()
(2)解:∵x∈[﹣
,
],
∴|
+
|=
=
=2cosx,
则f(x)=
﹣m|
+
|+1=cos2x﹣2mcosx+1=2cos2x﹣2mcosx,
令t=cosx,则
≤t≤1,
则y=2t2﹣2mt,对称轴t=
,
① 当
<
,即m<1时,
当t=
时,函数取得最小值此时最小值y=
﹣m=﹣1,得m=
(舍),
②当
≤
≤1,即m<1时,
当t=
时,函数取得最小值此时最小值y=﹣
=﹣1,得m=
,
③当
>1,即m>2时,
当t=1时,函数取得最小值此时最小值y=2﹣2m=﹣1,得m=
(舍),
综上若f(x)的最小值为﹣1,则实数m= ![]()
(3)解:令g(x)=2cos2x﹣2mcosx+
m2=0,得cosx=
或
,
∴方程cosx=
或
在x∈[﹣
,
]上有四个不同的实根,
则
,得
,则
≤m<
,
即实数m的取值范围是
≤m< ![]()
【解析】(1)利用向量数量积的公式化简函数f(x)即可.(2)求出函数f(x)的表达式,利用换元法结合一元二次函数的最值性质进行讨论求解即可.(3)由g(x)=0得到方程的根,利用三角函数的性质进行求解即可.
科目:高中数学 来源: 题型:
【题目】兰州一中在世界读书日期间开展了“书香校园”系列读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”。
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 |
![]()
(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(2)利用分层抽样从这100名学生的“读书迷”中抽取8名进行集训,从中选派2名参加兰州市读书知识比赛,求至少有一名男生参加比赛的概率。
附: ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H为BC的中点.![]()
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=﹣
x3+
x2+2ax.
(1)若f(x)在(
,+∞)上是单调减函数,求实数a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为﹣
,求f(x)在该区间的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)═log2(
+a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
,椭圆
,
为椭圆
的右顶点,过原点且异于
轴的直线与椭圆
交于
两点,
在
轴的上方,直线
与圆
的另一交点为
,直线
与圆
的另一交点为
,
![]()
(1)若
,求直线
的斜率;
(2)设
与
的面积分别为
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com