10£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊÇp-2cos¦È+2sin¦È=0£¬ÒÔ¼«µãΪƽ¶¥Ö±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨rΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|AB|µÄÖµ£®

·ÖÎö £¨1£©¶Ô¼«×ø±êÁ½±ßͬ³Ë¦ÑµÃµ½Ö±½Ç×ø±ê·½³Ì£¬½«²ÎÊý·½³ÌÁ½Ê½Ïà¼õÏûÈ¥²ÎÊýµÃµ½ÆÕͨ·½³Ì£»
£¨2£©°ÑÖ±Ïß²ÎÊý·½³Ì´úÈëÇúÏ߯Õͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåºÍ¸ùÓëϵÊýµÃ¹ØÏµ½â³ö|AB|£®

½â´ð ½â£º£¨1£©¡ßp-2cos¦È+2sin¦È=0£¬¡à¦Ñ2-2¦Ñcos¦È+2¦Ñsin¦È=0£®
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÊÇx2+y2-2x+2y=0£¬¼´£¨x-1£©2+£¨y+1£©2=2£®
¡ß$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬¡ày-x=$\frac{1}{2}$£®¡àÖ±ÏßlµÄÆÕͨ·½³ÌÊÇy-x=$\frac{1}{2}$£®
£¨2£©°Ñ$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëx2+y2-2x+2y=0µÃ4t2+2$\sqrt{2}$t-3=0£¬
¡àt1+t2=-$\frac{\sqrt{2}}{2}$£¬t1t2=-$\frac{3}{4}$£®
¡à|AB|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\frac{\sqrt{14}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì£¬²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁи÷ʽÖгÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®${£¨\frac{b}{a}£©^9}={b^9}{a^{\frac{1}{9}}}$B£®$\root{12}{{{{£¨-5£©}^4}}}=\root{3}{-5}$C£®$\root{3}{{{a^3}+{b^3}}}={£¨a+b£©^{\frac{3}{4}}}$D£®$\sqrt{\root{3}{9}}=\root{3}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ¡÷ABCÖУ¬Èô$BC=6£¬AB=4£¬cosB=\frac{1}{3}$£¬ÄÇôAC=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³Ð£Ò»Äê¼¶°à¼¶½øÐÐÅÅÇòµ¥Ñ­»·Èü£¨Ã¿¸ö¶Ó¶¼ÒªÓëÆäËû¶Ó±ÈÈüÒ»³¡£©£¬ÓÐ8¸ö¶Ó²Î¼Ó£¬¹²ÐèÒª¾ÙÐбÈÈüµÄ³¡ÊýΪ£¨¡¡¡¡£©
A£®16B£®28C£®56D£®64

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶Ô±ßµÄ³¤·Ö±ðΪa£¬b£¬c£¬MΪAB±ßµÄÖе㣬$\overrightarrow{CM}$=¦Ë$\overrightarrow{MP}$£¨¦Ë¡ÊR£©ÇÒ$\overrightarrow{MP}$=$\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|cosA}$+$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|cosB}$£¬ÓÖÒÑÖª|$\overrightarrow{CM}$|=$\frac{c}{2}$£¬Ôò½ÇC=90¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÖ±Ïß1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-t}\\{y=\sqrt{5}+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£®
£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ£¨3£¬$\sqrt{5}$£©£¬Çó|PA|+|PB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÐ7ÃûͬѧÅųÉÒ»ÅÅ£¬¼×Éí¸ß×î¸ß£¬ÅÅÔÚÖм䣬ÆäÓà6ÃûͬѧÉí¸ß½Ô²»Ò»Ñù£¬¼×µÄ×ó±ßºÍÓÒ±ßÒÔÉí¸ßΪ׼£¬Óɸߵ½µÍÅÅÁУ¬²»Í¬µÄÅÅ·¨¹²ÓУ¨¡¡¡¡£©
A£®15ÖÖB£®20ÖÖC£®40ÖÖD£®60ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ëù½ØÈÝÆ÷µÄÈÝ»ýV£¨µ¥Î»£ºcm3£©ÊǹØÓÚ½ØÈ¡µÄ±ß³¤x£¨µ¥Î»£ºcm£©µÄº¯Êý£®
£¨1£©Ëæ×ÅxµÄ±ä»¯£¬ÈÝ»ýVÊÇÈçºÎ±ä»¯µÄ£¿
£¨2£©½ØÈ¡µÄСÕý·½Ðεı߳¤Îª¶àÉÙʱ£¿ÈÝÆ÷µÄÈÝ»ý×î´ó£¿×î´óÈÝ»ýÊǶàÉÙ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÒ»µãOµ½Æ½ÐÐËıßÐÎABCDÈý¸ö¶¥µãA£¬B£¬CµÄÏòÁ¿·Ö±ðÊÇ$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$£®ÇóÏòÁ¿$\overrightarrow{OD}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸