精英家教网 > 高中数学 > 题目详情
已知实数a,b,c满足a2+b2
1
4
c≤1,则a+b+c的最小值是
 
考点:基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:由a+b+c≥a+b+4(a2+b2),通过配方变形即可得出.
解答: 解:∵实数a,b,c满足a2+b2
1
4
c≤1,
∴a+b+c≥a+b+4(a2+b2)=4(a+
1
8
2+4(b+
1
8
2-
1
8
-
1
8
,当a=b=-
1
8
,c=
1
8
时取等号,
∴a+b+c的最小值为-
1
8

故答案为:-
1
8
点评:本题考查求a+b+c的最小值、配方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一圆锥的底面半径为1,高为
3
,则圆锥的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的个数有(  )
(1)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;
(2)命题“?x∈R,使得x2+x+1<0”的否定是:“对?x∈R,均有x2+x+1>0”;
(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
(4)在数列{an}中,a1=1,Sn是其前n项和,且满足Sn+1=
1
2
Sn
+2,则{an}是等比数列;
(5)若函数f(x)=x3+ax2-bx+a2在x=1处有极值10,则a=4,b=11.
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为AC中点,点E满足,
BE
=
2
5
BD
,若F为边BC上一点,且满足
AF
AE
,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前项n和sn=n2+4n(n∈N*),数列{bn}为等比数列,首项b1=2,公比为q(q>0),且满足b2,b3+4q,b4成等差数列.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
3(an-3)•bn
4
,记数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={0,1,2,3},则A的非空真子集的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x3,x<0
-tanx,0≤x<
π
2
,则f(f(
π
4
))
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:函数f(x)=logax在(0,+∞)上是增函数;命题Q:?x∈R,使得x2-4x+A=0.
(1)若命题“P且P”为真,求实数a的取值范围;
(2)若命题“P或Q”为真,“P且Q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用秦九韶算法计算函数f(x)=12+35x-8x2+79x3+6x4+5x5+3x6当x=-4时的函数值时.v2的值为(  )
A、3B、-7C、34D、-57

查看答案和解析>>

同步练习册答案