精英家教网 > 高中数学 > 题目详情
下列命题正确的个数有(  )
(1)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;
(2)命题“?x∈R,使得x2+x+1<0”的否定是:“对?x∈R,均有x2+x+1>0”;
(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
(4)在数列{an}中,a1=1,Sn是其前n项和,且满足Sn+1=
1
2
Sn
+2,则{an}是等比数列;
(5)若函数f(x)=x3+ax2-bx+a2在x=1处有极值10,则a=4,b=11.
A、1个B、2个C、3个D、4个
考点:命题的真假判断与应用
专题:简易逻辑
分析:对于(1),由复合命题的真值表加以判断;
对于(2),直接写出特称命题的否定加以判断;
对于(3),化直线方程的两点式为整式方程,说明命题正确;
对于(4),由数列递推式得到2an+1=an(n≥2),求出a2后说明
a2
a1
≠2
,命题错误;
对于(5),求导数,利用函数在x=1处有极值10,得到两个条件f(1)=10和f'(1)=0,然后利用方程组求解a,b.
解答: 解:(1),“p∧q为真命题”是p和q均为真命题.而“p∨q为真命题”只要p和q中至少有一个真命题即可,故命题“p∧q为真”是命题“p∨q为真”的充分不必要条件,命题(1)错误;
(2)命题“?x∈R,使得x2+x+1<0”的否定是:“对?x∈R,均有x2+x+1≥0”,命题(2)错误;
(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示,命题(3)正确;
(4)在数列{an}中,a1=1,Sn是其前n项和,且满足Sn+1=
1
2
Sn
+2,即2Sn+1=Sn+4,
取n=n-1,得2Sn=Sn-1+4(n≥2),两式作差得:2an+1=an(n≥2),
由Sn+1=
1
2
Sn
+2,且a1=1求得a2=
3
2
,则{an}不是等比数列,命题(3)错误;
(5)若函数f(x)=x3+ax2-bx+a2在x=1处有极值10,则a=4,b=11,正确.
由函数的导数为f'(x)=3x2+2ax-b,
∵函数f(x)=x3+ax2-bx+a2在x=1处有极值10,
∴f(1)=10且f'(1)=0.
3+2a-b=0
1+a-b+a2=10
,解得
a=-3
b=-3
a=4
b=11

当a=-3,b=-3时,f'(x)=3x2-6x+3=3(x-1)2≥0,
此时函数单调递增,此时函数没有极值,不满足条件.
经检验值当a=4,b=11时,满足条件,命题(5)正确.
∴正确的命题是2个.
故选:B.
点评:本题考查了命题的真假判断与应用,考查了等比关系的确定,训练了利用导数求函数的最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从抛物线y2=2px(p>0)上各点向x轴作垂线段,求垂线段中点的轨迹方程,并说明它是什么曲线?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x+
4
x-1
(x>1).
(1)求函数f(x)的最小值;
(2)若?x∈(1,+∞),使得不等式|2a-1|+|a+1|≥f(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
7x2-6x-1
x2-x+1
<0的解集为(  )
A、空集
B、{x|-
1
7
<x<1}
C、{x|-1<x<
1
7
}
D、{x|x<-
1
7
或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x|x|+x3+2在[-2013,2013]上的最大值与最小值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”.若命题“p且q”是真命题,则实数a的取值范围为(  )
A、-2≤a≤1
B、a≤-2或1≤a≤2
C、a≥1
D、a≤-2或 a=1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得
f(x1)+f(x2)
2
=M,则称函数f(x)在I上的“均值”为M,已知f(x)=log2x,x∈[1,22014],则函数f(x)=log2x在[1,22014]上的“均值”为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足a2+b2
1
4
c≤1,则a+b+c的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等差数列{an}满足:a1,a2,a4成等比数列,且a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2(1+
1
an
)
,设Tn=b1+b2+…+bn,求数列{
1
2Tn2Tn+1
}
的前n项和Sn

查看答案和解析>>

同步练习册答案