精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体的棱长为a分别是棱的中点,过点的平面分别与棱交于点,设,给出以下四个命题:

1)平面与平面所成角的最大值为

2)四边形的面积的最小值为

3)四棱锥的体积为

4)点到平面的距离的最大值为

其中正确的个数为(

A.1B.2C.3D.4

【答案】C

【解析】

由两平面所成角的余弦公式即面积射影公式,计算可得所求最大值,可判断(1);

由四边形为菱形,计算面积,考虑的最小值,可判断(2);

由棱锥的等体积法,计算可判断(3);

由等体积法和函数的性质可判断(4);

对于(1),由面面平行的性质定理可得,可得四边形为平行四边形,又直角梯形和直角梯形全等,可得,即有四边形为菱形,且,由平面在底面上的射影为四边形

由面积射影公式可得

,可得,可得平面与平面所成角的最大值不为,故(1)错;

对于(2),由,可得菱形的面积的最小值为

故(2)正确;

对于(3),因为四棱锥的体积为

,故(3)正确;

对于(4

到平面的距离为,可得

可得 ,(其中),当时,

取得最大值,故(4)正确;

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数xy满足,则z的取值范围是______.表示ab两数中的较大数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 命题,则命题

B. ”是“”的充要条件

C. 命题“若,则”的逆否命题是“若,则

D. 命题;命题:对,总有;则是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆上至少有三个不同的点到直线的距离为,则直线l的倾斜角的取值范围是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求平面直角坐标系中格点凸五边形(即每个顶点的纵横坐标都是整数的凸五边形)的周长的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱台中,底面,四边形为菱形,.

(1)若中点,求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数的图象关于直线对称,当时,函数.

1)求的值;

2)求的表达式;

3)若关于的方程有解,那么将方程在取某一确定值时所求得的所有解的和记为,求的所有可能值及相应的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,港口在港口的正东120海里处,小岛在港口的北偏东的方向,且在港口北偏西的方向上,一艘科学考察船从港口出发,沿北偏东方向以20海里/小时的速度驶离港口.一艘给养快艇从港口60海里/小时的速度驶向小岛,在岛转运补给物资后以相同的航速送往科考船.已知两船同时出发,补给装船时间为1小时.

1)求给养快艇从港口到小岛的航行时间;

2)给养快艇驶离港口后,最少经过多少小时能和科考船相遇?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的单调函数满足,且

1)求

2)判断函数的奇偶性,并证明;

3)若对于任意都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案