精英家教网 > 高中数学 > 题目详情
3.已知$\frac{1-cosx}{sinx}$=-$\frac{1}{3}$,则$\frac{1+cosx}{sinx}$的值是(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

分析 由同角三角函数间的基本关系得到sin2x+cos2x=1,变形后即可求出所求式子的值.

解答 解:∵sin2x+cos2x=1,
∴sin2x=1-cos2x,即$\frac{1-cosx}{sinx}$=$\frac{sinx}{1+cosx}$,
∵$\frac{1-cosx}{sinx}$=-$\frac{1}{3}$,
∴则$\frac{1+cosx}{sinx}$=$\frac{sinx}{1-cosx}$=-3,
故选D

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知0<θ<π,且sinθ+cosθ=$\frac{1}{5}$,则$\frac{5sinα+4cosα}{15sinα-7cosα}$=$\frac{8}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}为等差数列,a1=2,其前n和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在p,q∈N*,使得(a2p+22-bq=2020成立,若存在,求出所有满足条件的p,q;若不存在,说明理由.
(3)是否存在非零整数λ,使不等式λ(1-$\frac{1}{a_1}$)(1-$\frac{1}{a_2}$)…(1-$\frac{1}{a_n}$)cos$\frac{{{a_{n+1}}π}}{2}$<$\frac{1}{{\sqrt{{a_n}+1}}}$对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把10个骰子全部投出,设出现6点的骰子的个数为X,则P(X≤2)=(  )
A.C${\;}_{10}^{2}$×($\frac{1}{6}$)2×($\frac{5}{6}$)8B.C${\;}_{10}^{1}$×$\frac{1}{6}$×($\frac{5}{6}$)9+($\frac{5}{6}$)10
C.C${\;}_{10}^{1}$×$\frac{1}{6}$×($\frac{5}{6}$)9+C${\;}_{10}^{2}$×($\frac{1}{6}$)2×($\frac{5}{6}$)8D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:(1+2i)+(1+4i)+(1+8i)+…+(1+1024i)=10-2046i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cosθ=$\frac{1}{2}$,角α的终边经过点P(sin2θ,sin4θ),则$\frac{6sinα+cosα}{3sinα-2cosα}$的值(  )
A.-1B.1C.7D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a是实数,记函数f(x)=2ax2+2x-3在区间[-1,1]上的最小值为g(a),求g(a)的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知在等差数列{an}中,a2+a6+a10=1,则a3+a9=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数g(x)=$\frac{{e}^{x}}{x}$,f(x)=axlnx+b,曲线y=f(x)在点(1,f(1))处的切线为y=x+$\frac{2}{e}$-1.
(1)求a,b;
(2)当h(x)=f(x)•g(x)时,证明:h(x)>1.

查看答案和解析>>

同步练习册答案