精英家教网 > 高中数学 > 题目详情
已知△ABC的一条内角平分线CD的方程为2x+y-1=0,两个顶点为A(1,2),B(-1,-1),求第三个顶点C的坐标.
考点:两直线的夹角与到角问题,直线的一般式方程
专题:直线与圆
分析:先求出点A关于于直线2x+y-1=0的对称点P的坐标,再根据点P在直线BC上,利用两点式求得BC的方程,再把BC的方程和CD的方程联立方程组,求得第三个顶点C的坐标
解答: 解:由题意可知:A(1,2)关于直线2x+y-1=0的对称点在直线BC上,设对称点为P(a,b),
则由
b-2
a-1
=
1
2
2•
a+1
2
+
2+b
2
-1=0
,解得:P(-
7
5
4
5
)
,所以lBC:即3x-4y-1=0.
再由
3x-4y-1=0
2x+y-1=0
得C点的坐标为(
5
11
1
11
)
点评:本题主要考查求一个点关于某直线的对称点的坐标的方法,利用了垂直、和中点在对称轴上这两个条件.还考查了用两点式求直线的方程,求两条直线的交点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
2
ax-2
x-1
(a为常数).
(1)若常数0<a<2,求f(x)的定义域;
(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是三个向量,试判断下列各命题的真假.
(1)若
a
b
=
a
c
a
0
,则
b
=
c

(2)向量
a
b
的方向上的投影是一模等于|
a
|cosθ(θ是
a
b
的夹角),方向与
a
b
相同或相反的一个向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三点A,B,C的坐标分别为A(1,0),B(0,-1),C(cosα,sinα),其a∈(0,π).
(1)若|
AC
|=|
BC
|,求角α的值.
(2)若
AC
BC
=
2
3
,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
|1-x2|
1+|x|
的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数y=x+
a
x
的定义域,值域,单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C为锐角△ABC的三个内角,向量
m
=(2-2sinA,cosA+sinA)与
n
=(sinA-cosA,1+sinA)共线.
(1)求角A的大小和求角B的取值范围;
(2)讨论函数y=2sin2B+cos
C-3B
2
的单调性并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+3a-3x<0
x2+1x≥0
在R上是单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)在[0,+∞)上递增,且f(3m-1)>f(m),则m的范围是
 

查看答案和解析>>

同步练习册答案