精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,则|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{3}$.

分析 设$\overrightarrow{b}$=(x,y),由向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,可得:$2\overrightarrow{a}$+$\overrightarrow{b}$=(2+x,2+y),$\sqrt{{x}^{2}+{y}^{2}}$=1,$\sqrt{(2+x)^{2}+(2+y)^{2}}$=3,联立检查即可得出答案.

解答 解:设$\overrightarrow{b}$=(x,y),
∵向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,
∴$2\overrightarrow{a}$+$\overrightarrow{b}$=(2+x,2+y),$\sqrt{{x}^{2}+{y}^{2}}$=1,$\sqrt{(2+x)^{2}+(2+y)^{2}}$=3,
联立解得$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$.
∴$\overrightarrow{a}-\overrightarrow{b}$=$(1-\frac{\sqrt{2}}{2},1+\frac{\sqrt{2}}{2})$或$(1+\frac{\sqrt{2}}{2},1-\frac{\sqrt{2}}{2})$.
则|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{(1-\frac{\sqrt{2}}{2})^{2}+(1+\frac{\sqrt{2}}{2})^{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了向量的坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c,函数f(x)在区间(0,1)内取极大值,在区间(1,2)内取极小值,则u=$\frac{b-2}{a-1}$的取值范围是$(\frac{1}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{{\root{3}{x^2}}}{e^x}$在x∈[-2,2]上的极值点的位置有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等差数列{an}中,a1+a6=12,a4=7,求an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前100个圈中的●的个数是(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函数f(x)的导函数为f'(x),且当x∈(0,$\frac{π}{2}$)时,f'(x)>sin2x•f(x)-cos2x•f'(x),若a=f($\frac{π}{3}$),b=2f(0),c=$\sqrt{3}$f($\frac{π}{6}$),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司在一次对员工的休闲方式(看电视与运动)与性别之间是否有关系的调查中,共调查了124人,其中女性70人中主要休闲方式是看电视的有43人,男性中主要休闲方式是运动的有33人.
(1)根据以上数据建立一个2×2的列联表;
(2)检验性别与休闲方式是否有关系.
${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
P(Χ2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=f(x)对任意实数x、y∈R满足:f(x•y)=f(x)+f(y)+1.
①求f(1)、f(-1)的值;
②证明:函数y=f(x)在R上是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知cosα=$\frac{1}{3}$,则cos2α=(  )
A.$-\frac{5}{9}$B.$\frac{{\sqrt{6}}}{3}$C.1D.$-\frac{7}{9}$

查看答案和解析>>

同步练习册答案