精英家教网 > 高中数学 > 题目详情
8.定义在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函数f(x)的导函数为f'(x),且当x∈(0,$\frac{π}{2}$)时,f'(x)>sin2x•f(x)-cos2x•f'(x),若a=f($\frac{π}{3}$),b=2f(0),c=$\sqrt{3}$f($\frac{π}{6}$),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

分析 把f'(x)>sin2x•f(x)-cos2x•f'(x)变形,可得sinx•f(x)-cosx•f′(x)<0,令g(x)=f(x)cosx,则g′(x)=cosx•f′(x)-f(x)sinx>0,从而得到函数g(x)为(0,$\frac{π}{2}$)上的增函数,由此可得$g(\frac{π}{3})>g(\frac{π}{6})>g(0)$,进一步得到a,b,c的大小.

解答 解:由f'(x)>sin2x•f(x)-cos2x•f'(x),得
sin2x•f(x)-cos2x•f'(x)-f'(x)<0,即sin2x•f(x)-(cos2x+1)•f′(x)<0,
∴sin2x•f(x)-2cos2x•f′(x)<0,
即2sinx•cosx•f(x)-2cos2x•f′(x)<0,
∵x∈(0,$\frac{π}{2}$),则cosx>0,∴sinx•f(x)-cosx•f′(x)<0.
令g(x)=f(x)cosx,则g′(x)=cosx•f′(x)-f(x)sinx>0,
则函数g(x)在(0,$\frac{π}{2}$)上为增函数,
又函数定义域为(-$\frac{π}{2}$,$\frac{π}{2}$),
∴$g(\frac{π}{3})>g(\frac{π}{6})>g(0)$,即$f(\frac{π}{3})•cos\frac{π}{3}>f(\frac{π}{6})•cos\frac{π}{6}>f(0)•cos0$,
∴$\frac{1}{2}f(\frac{π}{3})>\frac{\sqrt{3}}{2}f(\frac{π}{6})>f(0)$,则$f(\frac{π}{3})$>$\sqrt{3}f(\frac{π}{6})$>2f(0).
∴a>c>b.
故选:C.

点评 本题考查利用导数研究函数的单调性,考查函数构造法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求矩阵M=$[{\begin{array}{l}0&0\\ 0&1\end{array}}]$的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,x∈(0,e],(e是自然对数的底数),a∈R.
(1)讨论当a=1时,f(x)的极值;
(2)在(1)的条件下,证明:f(x)>g(x)+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}中,a2+a8=10,则该数列前9项和S9等于(  )
A.18B.27C.36D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,则|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个命题:(1)y=1+x和y=$\sqrt{(1+x)^{2}}$表示相等函数;
(2)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
(3)f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a的取值范围是a≥-3;
(4)[-1,0]是y=x2-2|x|-3的一个递增区间.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的内角A,B,C的对边分别为a,b,c,设$\overrightarrow{p}$=(c-b,c-a),$\overrightarrow{q}$=(sinA,sinB+sinC),且$\overrightarrow{p}$∥$\overrightarrow{q}$,则B=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}的前n项和为Sn,若S25>0,S26<0,则Sn最大时n=(  )
A.12B.13C.15D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在区间($\frac{1}{3},+∞}$)上单调递增,则实数a的取值范围是[-$\frac{2}{9}$,+∞).

查看答案和解析>>

同步练习册答案