精英家教网 > 高中数学 > 题目详情
17.等差数列{an}的前n项和为Sn,若S25>0,S26<0,则Sn最大时n=(  )
A.12B.13C.15D.25

分析 由S25>0,S26<0,利用等差数列的通项公式性质及其求和公式可得a13>0,a14<0.即可得出.

解答 解:∵S25>0,S26<0,
∴$\frac{25({a}_{1}+{a}_{25})}{2}$=25a13>0,$\frac{26({a}_{1}+{a}_{26})}{2}$=13(a13+a14)<0,
∴a13>0,a14<0.
则Sn最大时n=13.
故选:B.

点评 本题考查了等差数列的通项公式及其性质、求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极值,
(1)若y=f(x)在原点处的切线的斜率为-3,求f(x)的解析式和极值;
(2)若f(x)在x=1处取得的是极小值,问是否存在实数m,n,t∈[1,$\frac{3}{2}$]使得f(m)+f(n)<f(t)成立,若存在,求实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函数f(x)的导函数为f'(x),且当x∈(0,$\frac{π}{2}$)时,f'(x)>sin2x•f(x)-cos2x•f'(x),若a=f($\frac{π}{3}$),b=2f(0),c=$\sqrt{3}$f($\frac{π}{6}$),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.整个上午(8:00~12:00)天气越来越暖,中午时分(12:00~13:00)一场暴风雨使天气骤然凉爽了许多,暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉,画出这一天8:00~20:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=f(x)对任意实数x、y∈R满足:f(x•y)=f(x)+f(y)+1.
①求f(1)、f(-1)的值;
②证明:函数y=f(x)在R上是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2-x.
给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正确的有(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若数列{an}满足$\frac{1}{{{a_{n+1}}}}-\frac{p}{a_n}$=0,n∈N*,p为非零常数,则称数列{an}为“梦想数列”.已知正项数列$\left\{{\frac{1}{b_n}}\right\}$为“梦想数列”,且b1b2b3…b99=399,则b8+b92的最小值是(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在一次考试中,7位同学的数学、物理成绩分数对应如表:
学生  A
 数学(x分) 60 65 70 75 80 85 90
 物理(y分) 7177 80 84 87 90 92
(1)根据上述数据,求出变量y与x的相应系数并说明物理成绩y与数学成绩x之间线性相关关系的强弱
(2)如果物理成绩y与数学成绩x之间有较强的线性相关关系,求y与x的线性回归方程,并估测该班某位同学数学分数是95分时的物理成绩;(系数精确到0.01)
本题参考数据:
$\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}$=700,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=480,$\sqrt{700}$≈26.5,$\sqrt{336}$≈18.3
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
对于相关数据系数r的大小,如果r∈[-1,-0.75],那么y与x负相关很强,如果r∈[0.75,1],那么y与x正相关很强,如果r∈(-0.75,-0.30)或r∈(0.30,0.75),那么y与x相关性一般,如果r∈[-0.25,0.25],那么y与x相关性较弱.
回归直线方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在数列{an}中,a1=2,a2=3,an+2=3an+1-2an,则an=2n-1+1.

查看答案和解析>>

同步练习册答案