精英家教网 > 高中数学 > 题目详情

已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数的最小值.

(Ⅰ)的单调减区间为;单调增区间为;(Ⅱ)

解析试题分析:(Ⅰ)先求导函数,得,令,得递增区间为;令,得递减区间为;(Ⅱ)令,得,讨论与区间的位置关系,当,或时,函数单调,利用单调性求最值;当,将定义域分段,分别判断导函数符号,得单调区间,判断函数的值图像,从而求得最值.
试题解析:(Ⅰ)解:因为,所以
,得.当变化时,的变化情况如下:











 

的单调减区间为;单调增区间为
(Ⅱ)解:由(Ⅰ),得的单调减区间为;单调增区间为
所以当,即时,上单调递增,
上的最小值为
,即时,
上单调递减,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的图像在点处的切线斜率为10.
(1)求实数的值;
(2)判断方程根的个数,并证明你的结论;
(21)探究: 是否存在这样的点,使得曲线在该点附近的左、右两部分分别位于曲线在该点处切线的两侧? 若存在,求出点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)若,求函数的极值点;
(Ⅱ)若在区间内单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.

(1)求的取值范围;(运算中
(2)若中间草地的造价为,四个花坛的造价为,其余区域的造价为,当取何值时,可使“环岛”的整体造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b为常数,a¹0,函数
(1)若a=2,b=1,求在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;
②若,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数);
(Ⅰ)如果函数有相同的极值点,求的值;
(Ⅱ)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(Ⅲ)记函数,若函数有5个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),其图象是曲线
(1)当时,求函数的单调减区间;
(2)设函数的导函数为,若存在唯一的实数,使得同时成立,求实数的取值范围;
(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(Ⅰ)若函数是区间上的增函数,求实数的取值范围;
(Ⅱ)若时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:

查看答案和解析>>

同步练习册答案