精英家教网 > 高中数学 > 题目详情

已知函数,其中.
(Ⅰ)若,求函数的极值点;
(Ⅱ)若在区间内单调递增,求实数的取值范围.

(Ⅰ)极小值点,无极大值点;(Ⅱ);

解析试题分析:(Ⅰ)将代入函数中得,对求导并令导数等于零求出,由于定义域为,舍去,再列表判断左右两端的单调性,确定其实极小值点;(Ⅱ)若在区间内单调递增上恒成立;即,所以恒成立恒成立,令,利用单调性,求出,即可求出的取值范围.
试题解析:(Ⅰ)当时,(舍去)……3分



1



0


单调减
极小值
单调增
所以有极小值点,无极大值点  6分
(Ⅱ),所以恒成立  9分
上单调递减,所以,即.  12分.
考点:1.函数求导;2导函数性质的应用;3分离参数发在不等式中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|; ?
(3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量m=(ex,ln xk),n=(1,f(x)],mn(k为常数),曲线yf(x)在点(1,f(1))处的切线与y轴垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的单调区间;
(2)已知函数g(x)=-x2+2ax(a为正实数),若对于任意x2∈[0,1],总存在x1∈(0,+∞),使得g(x2)<F(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数的极值.
(2)证明:上为增函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且是函数的一个极小值点.
(Ⅰ)求实数的值;
(Ⅱ)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若在x=处的切线与直线4x+y=0平行,求a的值;
(Ⅱ)讨论函数的单调区间;
(Ⅲ)若函数的图象与x轴交于A,B两点,线段AB中点的横坐标为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)证明:
(2)当时,,求的取值范围.

查看答案和解析>>

同步练习册答案