精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=|2x+1|+|2x-3|,
(1)若关于x的不等式f(x)>|1-3a|恒成立,求实数a的取值范围;
(2)若关于t的一元二次方程${t^2}-4\sqrt{2}t+f(m)=0$有实根,求实数m的取值范围.

分析 (1)利用绝对值的几何意义求出|2x+1|+|2x-3|的最小值,得到a的不等式求解即可.
(2)通过△≥0,得到|2m+1|+|2m-3|≤8,去掉绝对值求解即可.

解答 解:(1)因为f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,
所以|1-3a|<4,即$-1<a<\frac{5}{3}$,
所以实数a的取值范围为$({-1,\frac{5}{3}})$.…(5分)
(2)△=32-4(|2m+1|+|2m-3|)≥0,
即|2m+1|+|2m-3|≤8,
所以不等式等价于$\left\{\begin{array}{l}m>\frac{3}{2}\\(2m+1)+(2m-3)≤8\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{1}{2}≤m≤\frac{3}{2}}\\{2m+1-2m+3≤8}\end{array}\right.$或$\left\{\begin{array}{l}m<-\frac{1}{2}\\-(2m+1)-(2m-3)≤8.\end{array}\right.$
所以$\frac{3}{2}<m≤\frac{5}{2}$,或$-\frac{1}{2}≤m≤\frac{3}{2}$,或$-\frac{3}{2}≤m<-\frac{1}{2}$,
所以实数m的取值范围是$\left\{{m|-\frac{3}{2}≤m≤\frac{5}{2}}\right\}$.       …(10分)

点评 本题考查函数恒成立,绝对值不等式的几何意义,二次函数的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.从直线x-y+3=0上的点向圆x2+y2-4x-4y+7=0引切线,则切线长的最小值为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{\sqrt{14}}{2}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{3\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在点B处测得山顶A的仰角为β,在点C处测得山顶A的仰角为α,BC=a,则山高AH为(  )
A.$\frac{asinαsinβ}{{sin({α-β})}}$B.$\frac{asinαcosβ}{{sin({α-β})}}$C.$\frac{acosαsinβ}{{sin({α-β})}}$D.$\frac{acosαcosβ}{{sin({α-β})}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|x2-2x≤0},B={-1,0,1,2,3},则A∩B={0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间内,可以确定一个平面的条件是(  )
A.两两相交的三条直线
B.三条直线,它们两两相交,但不交于同一点
C.三个点
D.三条直线,其中的一条与另外两条直线分别相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求曲线y=$\frac{1}{\sqrt{{x}^{2}-3x}}$在点(4,$\frac{1}{2}$)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某班有50名学生,一次考试的数学成绩ξ服从正态分布N(100,102),已知P(90≤ξ≤100)=0.3,估计该班学生成绩在110以上的人数为10人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在圆x2+y2=9上任取一点P,过点P作x轴的垂线段PD,D为垂足,点M在线段DP上,满足$\frac{|DM|}{|DP|}$=$\frac{2}{3}$,当点P在圆上运动时,设点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线y=m(x+5)上存在点Q,使过点Q作曲线C的两条切线互相垂直,求实数m的取值范围.

查看答案和解析>>

同步练习册答案