精英家教网 > 高中数学 > 题目详情
17.过双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F(-$\frac{{\sqrt{10}}}{2}$,0)作圆(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1的切线,切点在双曲线上,则双曲线的离心率等于(  )
A.2$\sqrt{10}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{{\sqrt{10}}}{2}$

分析 根据直线和圆相切的性质,结合双曲线的定义建立方程关系进行求解即可.

解答 解:由圆的方程(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1知圆心坐标为G($\frac{{\sqrt{10}}}{2}$,0),半径R=1,
∵过左焦点F(-$\frac{{\sqrt{10}}}{2}$,0)作圆(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1的切线,切点在双曲线上,
∴设切点为P,
则PG=1,PF=1+2a,FG=2c=$\sqrt{10}$,
则PF2+PG2=FG2
即(1+2a)2+1=10,
即(1+2a)2=9,得1+2a=3,a=1,c=$\frac{{\sqrt{10}}}{2}$,
∴双曲线的离心率e=$\frac{c}{a}$=$\frac{{\sqrt{10}}}{2}$,
故选:D.

点评 本题主要考查双曲线离心率的计算,根据直线和圆相切的性质,结合直角三角形的勾股定理建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)在x=c处的导数存在,则“c为函数f(x)的极值点”是“f′(c)=0”成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当k=2时,求证:对于?x>-1,f(x)<g(x)恒成立;
(Ⅲ)若存在x0>-1,使得当x∈(-1,x0)时,恒有f(x)>g(x)成立,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\left\{\begin{array}{l}{|x|-1,x>0}\\{si{n}^{2}x,x≤0}\end{array}\right.$,则下列结论正确的是(  )
A.f(x)为偶函数B.f(x)为增函数C.f(x)为周期函数D.f(x)值域为(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.
(1)求(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+3$\overrightarrow{b}$)的值;
(2)当实数x为何值时,x$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,经过右焦点F2的直线与双曲线C的右支交于P,Q两点,且|PF2|=2|F2Q|,PQ⊥F1Q,则双曲线C的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax3+bx2+cx+d在O、A两点处取得极值,其中O是坐标原点,A在曲线y=xsinx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])上,则曲线y=f(x)的切线斜率的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若某流程图如图所示,则该程序运行后输出的结果是$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=a-$\frac{1}{{{2^x}+1}}$是定义在(-1,1)上的奇函数.
(1)求a的值;
(2)试判断函数f(x)在(-1,1)上的单调性并证明;
(3)若f(x-1)+f(x)<0,求x的取值集合.

查看答案和解析>>

同步练习册答案