精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是
3
,D是AC的中点.
(1)求证:平面A1BD⊥平面A1ACC1
(2)求直线AB1与平面A1BD所成的角的正弦值.
考点:平面与平面垂直的判定,直线与平面所成的角
专题:空间位置关系与距离
分析:(1)由已知条件得AA1⊥底面ABC,BD⊥平面A1ACC1,由此能证明平面A1BD⊥平面A1ACC1
(2)作AM⊥A1D,设AB1与A1B相交于点P,连接MP,则∠APM就是直线A1B与平面A1BD所成的角,由此能求出直线AB1与平面A1BD所成的角的正弦值.
解答: (1)证明:∵正三棱住ABC-A1B1C1,∴AA1⊥底面ABC,
又∵BD⊥AC,A1A∩AC=A,∴BD⊥平面A1ACC1
又∵BD?平面A1BD,
∴平面A1BD⊥平面A1ACC1…6分
(2)解:作AM⊥A1D,M为垂足,
由(1)知AM⊥平面A1DB,设AB1与A1B相交于点P,
连接MP,则∠APM就是直线A1B与平面A1BD所成的角,…9分
∵AA1=
3
,AD=1,∴在Rt△AA1D中,
∠A1DA=
π
3
,∴AM=1×sin60°=
3
2
,AP=
1
2
AB1
=
7
2

∴sin∠APM=
AM
AP
=
3
2
7
2
=
21
7

直线AB1与平面A1BD所成的角的正弦值为
21
7
.…12分.
点评:本题考查平面与平面垂直的证明,考查直线性与平面所成角的正弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)lnx.
(Ⅰ)判断f(x)在(0,+∞)的单调性并证明你的结论;
(Ⅱ)设g(x)=
f(x)
a(1-x)
(a≠0),若对一切的x∈(0,1),不等式g(x)<-2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,点P(1,
2
3
3
)是椭圆上的一点,且|PF1|+|PF2|=2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l1,l2分别过点F1,F2,且l1⊥l2,直线l1交椭圆C于D、E两点,直线l2交椭圆C于M、N两点,求四边形DMEN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老张预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且求得ω=
π
72

(1)请你帮老张算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标)
(2)老张如能在今天以D点处的价格买入该股票3000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,过圆x2+y2=1上的动点M作y轴的垂线且交y轴于点N,点Q满足:
OQ
=2
OM
-
ON

(1)求点Q的轨迹方程C;
(2)设曲线C分别与x,y轴正半轴交于A,B两点,直线y=kx(k>0)与曲线C交于E,F两点,与线段AB交于点D,
ED
=6
DF
,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B=45°,AC=
10
,cosC=
2
5
5

(Ⅰ)求sinA的值和边AB的长;
(Ⅱ)设AB的中点为D,求中线CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
xlnx(0<x<1)
lnx
x
(x≥1)
,则函数的最大值与最小值的和等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
x2
2
+x在区间[m,n]上的值域是[3m,3n],则m-n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点向右平移
 
 个单位长度.

查看答案和解析>>

同步练习册答案