精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)过点A(a,0),B(0,b)的直线倾斜角为
6
,原点到该直线的距离为
3
2

(1)求椭圆的方程;
(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若
MD
=2
DN
求直线MN的方程;
(3)是否存在实数k,使直线y=kx+2交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由.
(1)由点A(a,0),B(0,b)的直线倾斜角为
6
,可得
b
a
=
3
3

1
2
ab=
1
2
×
3
2
×
a2+b2
,得a=
3
,b=1,
∴椭圆方程是:
x2
3
+y2=1
   (3分)
(2)设MN:x=ty+1(t<0)代入
x2
3
+y2=1
,得(t2+3)y2+2ty-2=0,
设M(x1,y1),N(x2,y2),由
MD
=2
DN
,得y1=-2y2
由y1+y2=-y2=-
2t
t2+3
,y1y2=
-2
t2+3
    (6分)
得-2(
2t
t2+3
)
2
=
-2
t2+3
,∴t=-1,t=1(舍去)
直线MN的方程为:x=-y+1即x+y-1=0    (8分)
(3)将y=kx+2代入
x2
3
+y2=1
,得(3k2+1)x2+12kx+9=0(*)
记P(x3,y3),Q(x4,y4),PQ为直径的圆过D(1,0),则PD⊥QD,即(x3-1)(x4-1)+y3y4=0,
又y3=kx3+2,y4=kx4+2,得(k2+1)x3x4+(2k-1)(x3+x4)+5=0       ①
又x3+x4=-
12k
3k2+1
,x3x4=
9
3k2+1
,代入①解得k=-
7
6
   (11分)
此时(*)方程△>0,∴存在k=-
7
6
,满足题设条件.      (12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案