精英家教网 > 高中数学 > 题目详情
18.一客户到某家政服务公司随机选聘2名服务员,现该公司共有5名服务员可供选聘,其中A类服务员2名(记为A1、A2),B类服务员3名(记为B1、B2、B3).
(1)写出所有的基本事件;
(2)求客户只选聘B类服务员的概率;
(3)求客户至少选聘1名B类服务员的概率.

分析 (1)一一列举所有的基本事件即可,
(2)客户只选聘B类服务员有(B1,B2),(B1,B3),(B2,B3)共3种,根据概率公式计算即可,
(3)根据对立事件的概率减法公式,求出即可.

解答 解:(1)所有的基本事件如下:(A1、A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).
(2)客户只选聘B类服务员有(B1,B2),(B1,B3),(B2,B3)共3种,
故客户只选聘B类服务员的概率为P=$\frac{3}{10}$,
(3)客户没有选聘1名B类服务员的为(A1、A2),
故客户没有选聘1名B类服务员的概率为$\frac{1}{10}$,
故客户至少选聘1名B类服务员的概率1-$\frac{1}{10}$=$\frac{9}{10}$

点评 本题考查等可能事件的概率,本题解题的关键是列举出事件数,要做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知中心在原点O的椭圆左,右焦点分别为F1,F2,F2(1,0),且椭圆过点(1,$\frac{3}{2}$).
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点A,B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,一楼高AB为17.5m,某广告公司在楼顶安装一块高BC为2m的广告牌,安装过程中,工作人员利用一个高EF为1.5m的仪器检测安装效果,设AE=xm,该仪器观察到广告牌的视角∠BFC=θ.
(1)若x=8,求tan∠BFC;
(2)为确保观察效果,要求视角的正切值即tan∠BFC不小于$\frac{1}{18}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,则函数f(x)的单调递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZB.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z
C.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{e}^{x}-a}{x-1}$,函数f(x)的图象在点(2,f(2))处的切线与直线y=-$\frac{1}{e}$x+e垂直,其中实数a是常数,e是自然对数的底数.
(Ⅰ)求实数a的值;
(Ⅱ)若关于x的不等式f(ex+1)≤t有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${∫}_{0}^{2π}$|cosx|dx=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,输出的S是下列哪个式子的值(  )
A.S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$B.S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$
C.S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$D.S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的两个顶点A、B的坐标分别为A(0,0),B(6,0),顶点C在曲线y=x2+3上运动,求△ABC重心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.$\frac{23}{3}$cm3B.$\frac{22}{3}$cm3C.$\frac{47}{6}$cm3D.7cm3

查看答案和解析>>

同步练习册答案