精英家教网 > 高中数学 > 题目详情
7.已知△ABC的两个顶点A、B的坐标分别为A(0,0),B(6,0),顶点C在曲线y=x2+3上运动,求△ABC重心的轨迹方程.

分析 可设重心坐标为(x,y),顶点C的坐标为(x0,y0),根据已知条件将x0、y0用x,y表示,再代入曲线y=x2+3的方程,求轨迹方程.

解答 解:设C点坐标为(x0,y0),△ABC重心坐标为(x,y),依题意有
3x=0+6+x0,3y=0+0+y0
解得x0=3x-6,y0=3y,
因点C(x0,y0)在y=x2+3上移动,y0=x02+3,
所以3y=(3x-6)2+3,
整理得3(x-2)2=y-1为所求△ABC重心轨迹方程.

点评 本题考查轨迹方程的求法,解题时要认真审题,注意三角形重心性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知某超市购进一批冰箱,这些冰箱60%来自上海,40%来自广州,上海冰箱的合格率为90%,广州冰箱的合格率为80%.若用A1、A2分别表示来自上海、广州的冰箱,B表示冰箱为合格品,试求:P(A1)、P(A2)、P(B|A1)、P($\overline{B}$|A2)各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一客户到某家政服务公司随机选聘2名服务员,现该公司共有5名服务员可供选聘,其中A类服务员2名(记为A1、A2),B类服务员3名(记为B1、B2、B3).
(1)写出所有的基本事件;
(2)求客户只选聘B类服务员的概率;
(3)求客户至少选聘1名B类服务员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Acos(ωx+φ)(ω>0)的部分图象如图所示,下面结论错误的是(  )
A.函数f(x)的最小周期为$\frac{2π}{3}$
B.图象f(x)的图象可由g(x)=Acos(ωx)的图象向右平移$\frac{π}{12}$个单位得到
C.函数f(x)的图象关于直线x=$\frac{π}{12}$对称
D.函数f(x)在区间($\frac{π}{4}$,$\frac{π}{2}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ekx-2x(k∈R,k≠0).
(1)若对任意的x∈R,都有f(x)≥1,求k的值;
(2)对于函数f(x)的单调递增区间内的任意实数x1,x2,x3(x1<x2<x3),证明:$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′(x2)<$\frac{f({x}_{3})-f({x}_{2})}{{x}_{3}-{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若椭圆的方程$\frac{x^2}{10-a}+\frac{y^2}{a-2}$=1,且此椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,则实数a=$\frac{14}{3}$或$\frac{22}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线,该直线与双曲线$\frac{x^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的两条渐近线的交点分别为B,C,若xC是xB与xF的等比中项,则双曲线的离心率等于(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{10}}}{3}$C.$2\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cosα=-$\frac{4}{5},α∈(\frac{π}{2},π)$,则tanα的值等于(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{{x}^{2}}{2}$-klnx,k∈R.
(1)求f(x)的单调性;
(2)判断方程f(x)=0在区间(1,$\sqrt{e}$)上是否有解?若有解,说明解的个数及依据;若无解,说明理由.

查看答案和解析>>

同步练习册答案