分析 过F作FM⊥AB于M,分别求出tan∠BFM,tan∠CFM,使用差角的正切函数公式计算tan∠BFC.
解答
解:(1)过F作FM⊥AB于M,则FM=AE=8,AM=EF=1.5.
∴BM=16,CM=18.
∴tan∠BFM=$\frac{BM}{FM}$=2,tan∠CFM=$\frac{CM}{FM}$=$\frac{9}{4}$.
∴tan∠BFC=tan(∠CFM-∠BFM)=$\frac{\frac{9}{4}-2}{1+\frac{9}{4}×2}$=$\frac{1}{22}$.
(2)tan∠BFM=$\frac{BM}{FM}$=$\frac{16}{x}$,tan∠CFM=$\frac{CM}{FM}$=$\frac{18}{x}$.
∴tan∠BFC=tan(∠CFM-∠BFM)=$\frac{\frac{2}{x}}{1+\frac{16}{x}•\frac{18}{x}}$=$\frac{2x}{{x}^{2}+288}$.
∴$\frac{2x}{{x}^{2}+288}$≥$\frac{1}{18}$,即x2-36x+288≤0,
解得12≤x≤24.
点评 本题考查了两角差的正切函数公式,解三角形的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36 | B. | 48 | C. | 72 | D. | 112 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{10}}}{3}$ | C. | $2\sqrt{2}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com