精英家教网 > 高中数学 > 题目详情
9.如图,一楼高AB为17.5m,某广告公司在楼顶安装一块高BC为2m的广告牌,安装过程中,工作人员利用一个高EF为1.5m的仪器检测安装效果,设AE=xm,该仪器观察到广告牌的视角∠BFC=θ.
(1)若x=8,求tan∠BFC;
(2)为确保观察效果,要求视角的正切值即tan∠BFC不小于$\frac{1}{18}$,求x的取值范围.

分析 过F作FM⊥AB于M,分别求出tan∠BFM,tan∠CFM,使用差角的正切函数公式计算tan∠BFC.

解答 解:(1)过F作FM⊥AB于M,则FM=AE=8,AM=EF=1.5.
∴BM=16,CM=18.
∴tan∠BFM=$\frac{BM}{FM}$=2,tan∠CFM=$\frac{CM}{FM}$=$\frac{9}{4}$.
∴tan∠BFC=tan(∠CFM-∠BFM)=$\frac{\frac{9}{4}-2}{1+\frac{9}{4}×2}$=$\frac{1}{22}$.
(2)tan∠BFM=$\frac{BM}{FM}$=$\frac{16}{x}$,tan∠CFM=$\frac{CM}{FM}$=$\frac{18}{x}$.
∴tan∠BFC=tan(∠CFM-∠BFM)=$\frac{\frac{2}{x}}{1+\frac{16}{x}•\frac{18}{x}}$=$\frac{2x}{{x}^{2}+288}$.
∴$\frac{2x}{{x}^{2}+288}$≥$\frac{1}{18}$,即x2-36x+288≤0,
解得12≤x≤24.

点评 本题考查了两角差的正切函数公式,解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设x、y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≥0}\\{3x-y-a≤0}\end{array}\right.$若目标函数z=x+y的最小值为-$\frac{2}{5}$,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛掷一枚骰子一次,出现“点数不小于5”的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知某超市购进一批冰箱,这些冰箱60%来自上海,40%来自广州,上海冰箱的合格率为90%,广州冰箱的合格率为80%.若用A1、A2分别表示来自上海、广州的冰箱,B表示冰箱为合格品,试求:P(A1)、P(A2)、P(B|A1)、P($\overline{B}$|A2)各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A、B两个小孩和甲、乙、丙三个大人排队,A不排两端,3个大人有且只要两个相邻,则不同的排法种数有48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的边AB长为4,若BC边上的中线为定长3,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校在半期考试中要考察六个学科,已知语文必须安排在首场,且数学与英语不能相邻,则这六个学科总共有(  )种不同的考试顺序.
A.36B.48C.72D.112

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一客户到某家政服务公司随机选聘2名服务员,现该公司共有5名服务员可供选聘,其中A类服务员2名(记为A1、A2),B类服务员3名(记为B1、B2、B3).
(1)写出所有的基本事件;
(2)求客户只选聘B类服务员的概率;
(3)求客户至少选聘1名B类服务员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线,该直线与双曲线$\frac{x^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的两条渐近线的交点分别为B,C,若xC是xB与xF的等比中项,则双曲线的离心率等于(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{10}}}{3}$C.$2\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案